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11 Data Analysis and Interpretation

This instructional document is intended as a generic guide to help ITAM personnel and
others address issues related to data analysis and interpretation in the context of the
Integrated Training Area Management (ITAM) Program and DoD land management.  For
this reason, it does not specifically address Land Condition-Trend Analysis (LCTA)
program goals and objectives, which may change over time.  Examples of data analyses
are taken from a variety of sources ranging from traditional to innovative and simple to
complex in nature.  Methods presented here are equally appropriate for examining
training-related and conservation-related issues or problems, and examples draw from
both types.   

11.1 Introduction

Data analysis and interpretation should be related directly to management and monitoring
objectives as outlined in implementation plans and monitoring protocols.  A discussion
and examples of management and monitoring objectives are presented in Chapter 2.  Just
as management and monitoring goals and objectives determined the selection of data
collection methods and sampling designs, they can also be used  to formulate specific
questions which direct data analysis approaches and procedures.  For example, are you
interested in comparing mean values with a threshold value, detecting changes over time,
or examining cause-and-effect or correlative relationships?  Monitoring objectives that
are very specific may explicitly state what type of statistical comparison will be used and
at what level of confidence.  In some cases a number of different analyses can use the
same data to explore relationships and differences, both temporal and spatial.  Monitoring
may document changes and/or relationships that were unforeseen at the outset of
implementation, thus necessitating a re-evaluation of approaches and methodologies.

Data analysis and interpretation should be documented and performed in as
straightforward a manner as possible, allowing for replication of procedures and
comparisons of future analyses with results from previous years.  Presentation (i.e.,
reporting of results) should be done at a level that is appropriate to the audience or reader.
 Examples of different audiences include the military training community (e.g., Training
Directorate, Range Control), natural resources staff, the public, or scientific/professional
forums.  The framework of a monitoring or LCTA report is discussed in Section 5.
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11.2 Analyzing Monitoring Data

11.2.1 Overview of Statistical Applications

The choice and application of analysis tools is largely determined by the level of
monitoring that is being used and the type of data that is collected, which in turn is related
to the monitoring objectives that have been specified.  Descriptions and applicability of
different levels of monitoring are presented in section 2.1.4 (Levels of Monitoring). 
Quantitative approaches to data analysis consist of descriptive and inferential statistics. 
Descriptive statistics consists of methods for organizing and summarizing information in
a clear and effective way (e.g., means and measures of variability).  Inferential statistics
consists of methods of drawing conclusions about a population or relationships based on
information obtained from a sample of the population.  Inferential statistics can be used to
analyze population differences, make associations between two or more factors that have
been measured, examine the effect on one factor from changes to other factors, and
examine whether a management action is having the desired effect.  Statistics allow the
user to make inferences about the population from a sample because it provides a
measure of precision or variation with regard to the sample data.  Sample estimates
without measures of variation have limited use because it is not possible to know the
proximity of the sample mean to the “true” value.    

Monitoring objectives generally focus on parameter estimation and change detection over
time.  The primary inferential procedures for addressing these issues are confidence
intervals and statistical tests.  Confidence intervals can be used for both point estimates
(e.g., estimates for a single point in time) and estimating changes over time.  Statistical
tests are a way to determine the probability that a result occurs by chance alone.    

11.2.2 Types of Data

The primary types of data that will be considered in this section are abundance data and
frequency data.  Although the approaches to interpreting these types of data are similar
(parameter estimation and testing for differences), the methods of statistical analyses are
different.  Abundance data includes density and cover information.  This data is
considered interval or continuous data, where quantities are counted or estimated on a
continuous scale (i.e., height, density, cover, length).  Data on the number of individuals
or items falling into various categories is considered frequency data (e.g., in how many of
50 frames surveyed did species A occur?).  Frequency is based on presence or absence,
and is not a true measure of abundance.  For example, if a particular species or condition
is present, there is no way to compare different levels of abundance (or degree) among
different quadrats.  Frequency data can be analyzed according to the normal distribution
or the binomial distribution, depending on the sampling design and distribution of the
data.
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11.3 Confidence Intervals

A confidence-interval estimate for the population mean, based on sample data, provides
information about the accuracy of the estimate.  The confidence level of a confidence
interval for a population mean signifies the confidence of the estimate.  That is to say, it
expresses the confidence we have that the estimated value actually lies within the
confidence interval.  The width of the confidence interval indicates the precision of the
estimate; wide confidence intervals indicate poor precision (or high variability), while
narrow confidence intervals indicate good precision.  For a fixed sample size, the greater
the required level of confidence, the greater the width of the confidence interval. 
Commonly-used levels of confidence are 80%, 90%, 95%, and 99%.  For natural
resources management purposes, confidence levels of more than 95% are generally
impractical, expensive, and unnecessary.  The confidence level chosen should be
reflective of the amount of risk you are willing to accept in making a false conclusion
based on a confidence interval (i.e., the confidence interval does not in fact contain the
true population mean). 

11.3.1 Assumptions

Confident intervals are a form of parametric statistics (data are assumed to have an
approximate normal distribution) that rely on several assumptions in order to interpret
results with the appropriate level of confidence.  If the assumptions are violated, the
validity of the confidence intervals may be suspect.  Several visual approaches for testing
assumptions for parametric statistics are presented in Figure 123. 

The basic assumptions and guidelines for using confidence intervals are:

a) The data (samples) have a normal distribution.  In statistics, the Central Limit
Theorem (CLT) states that the sampling distribution of means will be approximately
normally distributed for large samples even if the population is not normally
distributed.  Thus confidence intervals can often be used despite non-normal parent
distributions, as long as the departure from normality is not too severe and the sample
size is large enough.  In community and population-level monitoring, the CLT is
usually applicable where n ≥ 10 (The Nature Conservancy 1997).

b) Samples are independent.  It is important that the samples are not related or
correlated. Random sampling helps to ensure that samples are independent.  This
assumption is violated by samples from permanent plots, where the value of a
measurement will often be related to the value of subsequent measurements.

c) Samples are random and unbiased.  Restricting data collection to representative,
typical, or “key” areas does not constitute a random sample (Green 1979).

d) Variances are equal.  This assumption applies only to comparisons of two or more
samples.  Samples are typically assumed to have similar variances.  Large differences
in sample sizes can contribute to unequal variances.
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When one or more of these assumptions about the population is seriously violated, then
nonparametric statistics are used. 
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Figure 123.  Graphical approaches to examining data distribution.  A.  Box plot,  B.  Dot histogram
(dit) plot,  C.  Normal probability plot.
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11.3.2 Calculating Confidence Intervals

The confidence interval for the estimated population mean is calculated using the
following equation:

XvstX ,α±

where:
t = the critical t value for a confidence level of 1-α and n-1 degrees of freedom
v = number of degrees of freedom = n-1

xS = standard deviation of the estimated mean or standard error of the mean (SE or
SEM))

where 
n

Sx
deviation standard=

A two-tailed t table is used (see Appendices).  In words, we can say that we are 1-α
confidence that the confidence interval contains the true mean.  When referring to a
confidence interval, the quantity 1-α (e.g., 1-0.1 = 0.90 or 90%) is referred to as the
confidence level.  Note that as the standard deviation of the mean becomes smaller, the
confidence interval also becomes smaller.  Also, as sample size n increases, standard
deviation of the mean typically gets smaller.  As the confidence level increases (i.e., as α
gets smaller), the confidence interval becomes larger.  A large α produces a more narrow
confidence interval. 

11.3.3 Comparing a Point Estimate to a Threshold Value

Often, it is desirable to know if a resource has achieved a particular status or condition,
sometimes referred to as a management threshold.  By specifying management thresholds
expressed as numerical goals, land managers have a benchmark against which progress or
lack of progress can be measured.    For example, a management objective may specify a
minimum population size for a particular species of concern.  Constructing a confidence
interval for a point estimate is the most straightforward application of confidence
intervals.  If the threshold value is included in the confidence interval (i.e., the confidence
interval overlaps with the threshold value), there is no statistical difference at the
specified confidence level (e.g., 90%).
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11.3.3.1 Example 1: Cover/Abundance (normal distribution)

Canopy cover of perennial grasses was measured on grassland plots on a parcel of land in
Georgia (Figure 124).  Sampling was conducted in 1991 and 1993 on 25 vegetation
transects.  The management objective was to maintain at least 70% perennial plant cover.
 The monitoring  objective was to determine whether perennial plant cover was at least
70%.  The following steps are necessary:  (1) calculate the mean ( x ), standard deviation
(s), and standard error of the mean (SE) for each sample; (2)  calculate the confidence
interval as ( )SEtx v ×± ,α .  Sample data is presented in Table 33.

Table 33.  Sample data for calculating confidence intervals.

Percent Perennial Cover
Sample

ID
1991 1993

10 57 63
16 72 99
21 84 47
22 70 58
24 37 67
44 46 60
60 80 100
61 2 0
62 2 0
66 43 69
67 30 34
73 32 64
90 79 82

101 63 89
103 66 40
104 45 47
106 47 63
121 7 20
124 69 97
125 48 73
136 79 85
158 53 45
161 33 26
187 76 80
188 30 71

mean 50 59.16

standard deviation 24.39 28.04

standard error 4.88 5.61

A table of values of the Student’s t distribution is presented in section 11.15 (Appendix –
Statistical Reference Tables).

The 90% confidence interval for 1991 mean perennial vegetation cover is:
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34.58  to66.41
34.850

)88.4)(71.1(50

=
±=

±

The 90% confidence interval for 1993 mean perennial vegetation cover is:

75.68  to57.49
59.916.59

)61.5)(71.1(16.59

=
±=

±

Figure 124 illustrates that for both 1991 and 1993, perennial plant cover was less than
70% on grassland plots, with a 90% level of confidence.  Based on these results, the
management objective has not been achieved.
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Figure 124.  Percent perennial grass cover  - means and 90% confidence intervals.

11.3.3.2 Example 2: Frequency or Proportional Data (binomial distribution)

The following example uses data from a Great Basin installation to examine the
frequency of Centaurea diffusa (diffuse knapweed) within a particular watershed over a
five year period.  Data was collected on 100m –long transects, placing the frequency
frame (in this case 60 cm X 60 cm) at 50 locations on either side of the transect for a total
of 100 frames per sample.  All frames were aggregated within a watershed where diffuse
knapweed was considered a land management concern.  Data is presented in Table 34.
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Table 34.  Frequency and confidence limits for diffuse knapweed over a five-year period.

year

# frames with
diffuse

knapweed
present

# plots surveyed
(100 frames/

plot)

total # of
frequency
quadrats
surveyed

proportion of
frames with

diffuse
knapweed

95%
lower
limit

95%
upper
limit

1991 830 22 2200 0.38 0.34 0.42
1992 798 30 3000 0.27 0.24 0.3
1993 1378 38 3800 0.36 0.32 0.40
1994 879 35 3500 0.25 0.21 0.28
1996 1488 34 3400 0.44 0.40 0.48

The results are presented graphically in Figure 125.  If the monitoring objective is to
detect whether knapweed frequency exceeds 0.4 (or 40% of samples), then the threshold
is exceeded in 1991, almost exceeded in 1993, and exceeded again in 1996.
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Figure 125. Frequency and confidence limits (95% level) for diffuse knapweed over a five-year
period.

In this case, a 95% confidence level was chosen.  Binomial confidence limits were taken
from published tables (Rohlf and Sokal 1981) (see section 11.15 Appendix   Statistical
Reference Tables).

11.3.4 Comparing Two Independent Samples

This approach illustrates how confidence intervals are used to evaluate changes over time
or differences between samples at the same point in time.  For example, is the sample in
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year 1 different from the sample in year 2?  There are two methods to address this type of
question.  The first uses confidence intervals for each point estimate (i.e., each time
period).  If the confidence intervals overlap greatly, the samples are not different,
especially if the confidence interval of one sample includes the mean value of the other. 
If the confidence intervals do not overlap at all or are widely spaced, the samples are
probably different.  This method is an extension of the approach for point-estimate
confidence intervals, discussed in section 11.3.3.

A second, more effective method, is to estimate the amount of change by developing a
confidence interval for the difference between the two means.  If the confidence interval
for the mean difference does not contain zero, then the samples are different at the
specified level of confidence.

11.3.4.1 Example 1: Confidence Intervals for Means (independent samples)

This example uses data from a Great Basin installation to determine if there are
differences in shrub density on shrubland plots between areas that receive training and
areas that are unavailable for training (Figure 126).  The confidence intervals for the two
samples do not overlap and there is some distance between them.  In this case we would
conclude that the samples are different at a 95% level of confidence; shrub density is
higher on plots with no military use.
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Figure 126.  95% confidence intervals for shrub density on land that is used for military training and
land where training is excluded (1991 Idaho data).
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11.3.4.2 Example 2: Confidence Interval for the Mean Difference (independent samples)

Using the same data collected at the Idaho site (22 plots in training areas, 22 plots in
control areas) in the above example, we can use a more exact approach to examine the
difference between two independent samples.  Figure 127 illustrates that the 95%
confidence interval for the mean difference does not contain zero.  We can therefore
conclude that the means are different.  This result agrees with and provides a less
subjective interpretation than the findings based on the comparison of confidence
intervals for the sample means (Figure 126).

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

diff train/no train

m
ea

n 
di

ffe
re

nc
e 

(s
te

m
s/

ha
)

Figure 127.  Mean and 95% confidence interval for difference in shrub density in trained and
untrained areas, 1991.

11.3.5 Comparing Two Non-independent Samples (permanent plots)

When permanent plots are remeasured, then measurements are not independent from one
another.  Instead of comparing confidence intervals for point estimates, a confidence
interval is constructed around the mean of the differences between each pair of plots
using the standard error of the mean difference.  This approach is appropriate for
examining changes over time.  If the confidence interval for the mean difference does not
contain zero, then the resampled plots are significantly different at the specified
confidence level. 

11.3.5.1 Example: Calculate a CI Around the Mean Paired Difference

 This example compares data collected from permanent plots (paired data) to determine if
there has been a change over time.  Data was collected in Idaho on land used for training
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and adjacent land where no training occurs. Shrub densities were counted on permanent
plots in 1991 and 1997.  Confidence intervals for the mean difference in shrub densities
between 1991 and 1997 were calculated for both types of plots (Figure 128).  The results
indicate that densities did change significantly (neither confidence interval overlaps with
zero).  Densities on plots where training occurred increased significantly from 1991 to
1997.  Plots located where no training occurs had a significant decrease in shrub density
at the 90% confidence level. 
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Figure 128.  Mean and 90% confidence interval for change in shrub density on permanent plots.

The data can be organized in a simple table based on descriptive statistics that can be
calculated by a spreadsheet, a statistical package, or by hand (Table 35).

Table 35.  Density of shrubs (live individuals/plot).
1991 1997 Paired Difference

n Mean St. Dev. Mean St. Dev. Mean St. Dev. St. Error % Diff.
training 22 467.5 332.0 1166.4 918.3 701.4 955.9 111.1 +150

no training 22 1338.9 1243.3 891.9 798.9 -447.0 854.4 182.2 -33

Percent difference is calculated as the change between 1997 and 1991 relative to 1991
(relative change), and is calculated as:

100
mean1991

mean) 1991 - mean (1997(%) difference relative ×=
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11.4 Statistical Tests for Monitoring Data

A number of exercises are presented that allow the user to perform technically defensible
and statistically sound analyses such as: examination of conditions relative to threshold or
‘desired’ values, evaluation of the magnitude and significance of changes in resource
conditions over time, examination of cause-and-effect relationships, and evaluation of the
adequacy of sampling designs using inventory and monitoring data.

11.4.1 Caveats for Statistical Tests

Statistical software makes calculations easy.  However, care must be exercised to adhere
to the assumptions associated with statistical tests.  The primary purpose for statistical
tests is to divorce the investigator from bias.  Fowler (1990) suggests ways to avoid some
common statistical errors:

1. Explain the experimental design and how the statistical analysis was done.

2. Avoid doing lots of separate statistical tests (e.g., do not do a large series of t-tests
when an ANOVA is appropriate).

3. Be aware of the assumptions associated with the tests used.

4. Don't pool data without justification.

5. Use multiple comparison tests correctly (i.e., if nonsignificance is found in an
ANOVA, do not break-up the data to identify significant differences within a subset).

By definition, it is possible to carry out a parametric test if there are at least two samples.
 With two samples the degree of freedom is 1; however, the quality of the information is
questionable (i.e., the sample mean and estimate of variability may not be very
representative).  The larger the sample size the greater the chance the data represent the
population.
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Table 36.  Statistical terms and their definitions.

Terms Definition

parameter A measure of a population, such as the mean, standard
deviation, proportion, or correlation.

statistic A descriptor of a sample, such as mean, standard deviation, proportion, or
correlation.

hypothesis Part of a test for significance is that the hypothesized value of the sample
(statistic) is or is not equal to the population (parameter) value.

Type I Error The null hypothesis is rejected when true.  By setting a low level of
significance, the chance of a Type I Error is reduced, but the probability of
Type II Error increases.

Type II Error A null hypothesis is accepted when it is false. In this case, the two means
really are not equal.

one-tailed test When a parameter in a hypothesis is stated to be greater than or less than a
given value, the test is said to be one-tailed.  A one-tailed test considers the
results in one direction, such as is µ1-µ2 > 0 or biomass is greater on plots
with less than 30% tracking. The probability at a given level of significance
is half that of a two-tail test, therefore, a one-tail test is more rigorous
(powerful) and less susceptible to a Type II error. 

two-tailed test When a parameter in a hypothesis is equal or not equal, then the test is said
to be two-tailed.  A two-tailed test is preferred if either deviation would be
cause for action.  In this case, both tails of the sampling distribution are of
concern, such as µ1-µ2 = 0.   The probability at a given level of significance
is twice that of a one-tailed test and, therefore, less rigorous.

variable Any measured characteristic or attribute, such as percent bare ground, litter,
or plants/plot.

independent variable A measured characteristic or attribute thought to be the controlling variable
in the relation.

dependent variable A manipulated characteristic or attribute determined by another variable.

variance Variance is the measure of variability in a population. The value of a
variance around a mean ranges from zero (when all measurements in the
population have the same as the mean) to plus infinity (Woolf 1968).
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11.4.2 Statistical Significance and Confidence Levels

Statistical significance level and confidence are often  used interchangeably.  Biological
significance is not equivalent to statistical significance.  While there is a scientific need
for using the terms “significant” or “P<0.05”, neither may accurately describe a
biological significant situation (Yoccoz 1991).  While two sample means may differ
statistically, the result may be the consequence of a small or unrepresentative sample,
nonrandom data, dependency between samples, or unequal variances.  For this reason, the
importance of incorporating biological meaning or significance into program objectives
should not be understated.  However, a proper level of biological significance is often
difficult to determine.  Determining what constitutes a biologically significant change
requires reviews of available scientific information and professional judgement.  Ideally, 
significance levels are set prior to looking at the data to avoid bias.

Typically, statistical test results state whether the probability level is greater than or less
than the test level (α).  In other words, if α = 0.05, then the test value is displayed as
P<0.05 or P≥0.05.  One goal of statistical tests is to minimize the chance of committing a
Type I error (i.e., rejecting the null hypothesis when it is true - a false change error).  By
setting α = 0.20, there is a greater chance of committing a Type I error.  By setting a
lower α such as 0.01, there is less chance of committing a Type I error, but a greater
chance of committing a Type II error (i.e., accepting the null hypothesis when false; a
missed change error). 

If change detection is an objective, then particular attention should be paid to setting Type
I and Type II error rates.  Without a priori information, it may be difficult at the beginning
of a monitoring program to set realistic power and Type I error rates simultaneously.  One
approach is to set Type I and Type II error rates at the same level.  The minimum
detectable change would be set by the affordable sample size and the observed variance. 
If the affordable sample size and the minimum detectable change size are unacceptable,
then the method or design is inadequate and must be reconsidered (Hinds 1984).  Type I
and II error rates can also be adjusted (within limits) in order to reach a balance with
affordability and minimum detectable change.  Sometimes minimum detectable change
size and Type II error are ignored altogether while the sensitivity of the analysis to false-
change errors is examined exclusively (Hinds 1984). 

There is nothing immutable about the values of 0.01, 0.05, and 0.10, which correspond to
confidence levels of 99, 95, and 90 percent, respectively (Yoccoz 1991).  A biologically
significant difference may be accurate at a lower confidence level (e.g., α = 0.10 or α =
0.20).  An α = 0.20 may describe a biologically significant difference between a control
and training area attribute better than a P value less than an α = 0.05.  Traditionally, the
two types of errors are not treated equally; Type I errors are often considered more severe.
 For example, a 5% chance of a Type I error and a 20% chance of  Type II error may be
accepted in relation to a given amount of change (Snedecor and Cochran 1967).  In each
case, the consequences of making the two errors should be considered.  Hinds (1984)
suggests that traditional rates for both types of errors of 1 and 5% were suitable for
experimental work and domestic (i.e., controlled) conditions where the costs for making
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errors were quantifiable, and that realistic and adequate error rates for monitoring projects
may be significantly higher (10 to 15%) and still produce credible results.

When reporting statistical results include means, a measure of variability (e.g., standard
error,  standard deviation, confidence interval), the estimated difference set prior to the
test (often zero), and the confidence level.  Also realize that with further sampling, the
probability level and required sample sizes may change.  Understanding biological
systems requires multiple years of data collection to assess both spatial and temporal
variability.

11.4.3 Hypothesis Testing

Hypothesis testing is necessary to correctly interpret statistical results.  Some uses of
statistics such as confidence intervals do not involve hypothesis testing.  Prior to
beginning an "experiment," a researcher states the anticipated result or statistical
hypothesis.  Typically, the statement is that a parameter (population) represented by one
sample group of data will or will not be equal to a second group of sample data.  The
statement is written about the population (parameter).  The initial hypothesis, or null
hypothesis, is stated and the alternative hypothesis(es) follows.  A question such as -- Are
military impacts similar between Training Area X and Training Area Y?, would translate
into: The mean value of the response variable (e.g., vegetation cover, bare ground) in
areas subjected to training impacts in X  equals the mean value of the response variable
in areas subjected to training impacts in Y, or Ho µ1=µ2, where Ho stands for the null
hypothesis, µ1 is the mean of the population represented by the first sample, and µ2 
represents the mean of the population represented by the second sample.  An alternative
hypothesis might be: The mean for the training impacts in X is different from the  mean
training impact in Y, or H1 µ1≠µ2.

The basic steps in performing a hypothesis test are:

� State the null and alternative hypotheses.
� Decide on the significance level, α.
� Determine the decision rule.
� Apply the decision rule to the sample data and make the decision.
� State the conclusion in words.

11.5 Choosing a Statistical Procedure

Different monitoring objectives and types of data necessitate that the user choose an
analysis approach from a number of possible approaches.  Monitoring objectives often
focus on parameter estimation and detecting change over time.    The selection of a
statistical procedure must consider a number of variables, including independence of
samples, distribution of data, equality of variances, and type of data.  Decision keys for
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the selection of a statistical procedure for non-independent samples and independent
samples are presented in Figure 129 and Figure 130, respectively.
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11.5.1 Normality Assumptions

Examining the normality of sample data involves comparing the distribution of samples
to that of  a normal distribution.  A normal distribution is a specific mathematical
function with a bell-like shape, which can be expressed by the mean and the standard
deviation.  The distribution curve may vary in the height and width; however, the mean,
median, and mode are all at the same point.  Many biological variables follow a normal
distribution.  Survivorship curves, rates, and size variables, tend to follow a Poisson or
other distribution functions, as do other continuous variables related to time and space. 
Because the common statistical tests are based on a normal sampling distribution, some
investigators test their data for "normality." For these data types, a "goodness-of-fit" test
is performed.  Goodness-of-fit measures the degree of conformity between the sample
data to the hypothesized distribution (D'Agostino and Stephens 1986).

Data can either be graphed or tested to determine if the data approximates a normal
distribution pattern.  Parametric tests such as an analysis of variance (ANOVA) and t-
tests assume the data are normally distributed (i.e., a bell shape distribution, or if a
cumulative distribution is plotted on normal probability paper, linear).  Nonparametric
tests do not require a normal data distribution.  However, using nonparametric statistics
(i.e., rankings) for analyzing continuous data can be problematic, leading to erroneous
results.  Graphing a data set is a quick method to evaluate the pattern of distribution
(Figure 123).  Statistical tests are easily performed and included in a number of statistical
software packages.  Three commonly used tests are the Kolmogorov-Smirnov (KS) test,
Pearsons Chi-Square, and Log-likelihood ratio.

When data do not conform to a particular probability distribution, there are two courses of
action.  The first is the use of a nonparametric test, such as Kruskal-Wallis or Friedman. 
A second possibility, is to transform the variable to meet the assumption of normality
(Sokal and Rohlf 1981).  By transforming the data to another scale, a  standard analysis
can be used.  An appropriate transformation may be a logarithmic scale for data that are
multiplicative on a linear scale.  The use of square root transformation works well for
areas, reciprocals for pH and dilution series, and arcsine transformation for percentages
and proportions.  Scale of measurement is arbitrary and transformation of the variable
helps satisfy the assumptions of parametric tests (Sokal and Rohlf 1981).
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A. Cumulative distribution; 1994
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C. Density distribution; 1994 D. Density distribution; 1997

'normal' distribution

positive skew

Figure 131.  Comparison of differences in cumulative, density, and log-transformed density
distribution of litter ground cover; 1994 and 1997. 

A. Linearity of cumulative distribution as an estimation of normality of data in 1994.  B.
Lack of linearity of cumulative distribution of data in 1997, suggesting nonnormality.  C.
Density distribution of 1994 data approximates a Gaussian, or bell-shape distribution. D.
Positive skew of the density distribution of the data in 1997, suggesting nonnormality.
The box at the top of graphs C and D are the confidence intervals.  The means are shown ( x ). E
and F. Log transformations.
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11.5.2 Frequency/Binomial Tests

The chi-square test of independence and McNemar’s test are nonparametric tests for
detecting differences between proportions.  Discussion and examples of these tests are
provided in section 11.5.4, Non-paramentric Tests.

11.5.3 Parametric Tests

Parametric tests involve the calculation of the t statistic (i.e., the sample average divided
by the estimated standard error, or the number of estimated sample standard deviations
the test statistic ( x ) is from its hypothesized value) or the F statistic (i.e., Treatments
Mean Square divided by Error Mean Square).  In both cases, the parameter of interest is
the population mean (µ).  Because the value of µ is reflected in the sampling distribution
of x  (sampling mean), and because x  follows a normal distribution with a sufficient
sample size, the t and F tests are good tests for identifying differences between and
among sample means.

11.5.3.1 The T-Test

A t-test is a measure of a random sample mean and an unbiased estimate of a population.  The
sampling distribution of the data set should be normal, or a close approximation. t-tests, and
other parametric tests are not as robust with small sample sizes (e.g., less than 12) as they are
with larger samples (e.g., 100 or more).  The larger the sample size the closer the sample
distribution approaches to a normal distribution.  Large samples are robust (i.e., there is a greater
chance the P value is accurate), powerful (i.e., correctly rejecting a false null hypothesis, or 1- β),
and can discriminate between a normal and a non-normal distribution (GraphPad 1998).  Small
samples often do not have enough information and, in some cases, statistical testing may be
inappropriate.

The generalized formula for a t-test is (Rice Virtual Lab 1998):

n
s

tvalueedHypothezisStatistict
x

h

ndf 21    OR   
statistic  theoferror  standard Estimated

 µ−×=−= −=

where x  = the mean of the random sample
µh = the statistical hypothesis of the population mean
sx

2 = the estimated population variance
n = sample size 
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A typical null hypothesis associated with a t-test is stated as the mean equal to zero (Ho
x = 0), or any other value.  The value should represent a target or threshold that has real-
world significance.  For example, if we want warm season grass cover to be at least 30%,
then we would state the null hypothesis as Ho x ≥ 30%.  In this case a one-tailed test
would be employed.  The alternative hypothesis may be the mean does not equal a value
(H1 x ≠ 0) or that the mean of the population is greater than a given value (Ho x > 0).  If
the alternative hypothesis is H1 x ≠ 0, then a two-tailed test of significance is required.  If
the alternative hypothesis is H1 x > 0, then a one-tailed test of significance is appropriate.
 The difference is whether or not both or only one side of the normal curve is considered
by the test.  When a hypothesis states greater than or less than, only one-tail of the curve
is considered.  When a hypothesis states a condition either equal to or unequal to some
value then both tails of the curve must be considered (two-tailed test).

11.5.3.1.1 One Sample T-Test Example

Consider plant litter estimated on ten plots and from each plot determine the difference XI
 from µ when α = 0.05 (Table 37).  The previous year, litter ground cover was estimated
at 25%.  We want to know if litter cover this year is significantly different from 25%  The
null hypothesis is  Ho µ = 25 (i.e., the average amount of litter ( x )  represented by the
sample is equal to or greater than the threshold value specified for the population).  The
alternative is H1 , µ ≠ 25.

Table 37.  Percent litter cover for 10 samples.

Statistical Parameter Xi Xi
2

43
58
62
24
29
33
34
85
26
42

1,849
3,364
3,844
 576
  841
1,089
1,156
7,225
  676
1,764

Sum of the percent litter on 10 plots =
�XI 436

Sample mean = � n
X i  where n = the

sample size
43.6

Sum of each sampled squared = �Xi
2

22,384
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The estimated sample mean ( x ) is 43.6, the hypothesized population mean is 25, and the
standard error ( xs ) is 6.12, and the calculated t is +3.04.  The critical t value for 10-1 = 9
degrees of freedom at P (0.05) is 2.26  and for P (0.01) is 2.82 (see Table 71, Critical
Values of the Two-tailed Student’s T-Distribution).  Because the calculated t is greater
than the critical t value, we reject the null hypothesis.  The probability value for the
calculated t is therefore smaller than 0.01.  If only one tail of the curve is considered, and
the alternative hypothesis is H1 µ ≥ 25, the probability at 0.05 would be half  the stated t-
value or 1.13 and 1.41 for P (0.01).

To set the confidence limits at 95% for the population mean from which the sample was
drawn, the t value at the 0.05 level for n - 1 degrees of freedom is 2.26. 

L1 = x  - t0.05 xs  = 43.6  -  2.26(6.12) = 29.77
L2 = x  + t0.05 xs   = 43.6 + 2.26(6.12) = 57.43

The probability is 95% that the true population mean is between 29.77 and 57.43. 

Confidence limits are useful measures of the reliability of a sample statistic, but are not
commonly stated in scientific publications.  Generally, the statistic plus and minus (+/-)
its standard error are cited along with the sample size upon which the standard error is
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based (Sokal and Rohlf 1981).  However, in monitoring, confidence intervals are very
useful for comparing a mean to a threshold or target value.  If the target value fall outside
the confidence interval, then you can be 1-α % confident that the mean is greater than,
less than, or no different from the threshold value, whatever the case may be.

Statistical books have additional examples.  The primary source used for this discussion
was Principles of Biometry by C. M. Woolf (1968).

11.5.3.1.2 Comparison Test Involving Two Sample Means

A common test is to compare sample means from random samples.  If µ1 = µ2, i.e., the
samples means are the same, then any differences are due to sampling variation. The
point at which the samples describe different populations is based on the level of
significance set prior to the test (e.g., α = 0.05). 

A group comparison test requires the samples to be independent, normally distributed,
and to have equal population variances.   The null and alternative hypotheses are: Ho µ1 =
µ2 and H1 µ1 ≠ µ2. The degrees of freedom are (n1 -1) + (n2 - 1). The alternative hypothesis
calls for a two-tailed t-test.  For the following question, the significance level is α = 0.05.

Given plant litter cover data was estimated on an installation in June and September of
the same year, do the means represent the same population (Ho µ1 = µ2)? or the alternative
hypothesis -- do the means represent different populations (H1 µ1 ≠ µ2), α = 0.05 (Table
38)?
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Table 38.  Plant litter cover data collected across an installation in June and September 1998.

June September
X1 X1

2 X2 X2
2

58 3364 27 729
61 3721 22 484
54 2916 4 16
54 2916 17 289
52 2704 19 361
44 1936 19 361
87 7569 32 1024
71 5041 33 1089
65 4225 32 1024
71 5041 42 1764
82 6724 37 1369
62 3844 22 484
53 2809 25 625
40 1600 33 1089
66 4356 33 1089
20 400 16 256
52 2704 16 256
52 2704 40 1600
58 3364 17 289
34 1156 14 19
65 4225 30 90
44 1936 25 62
48 2304 25 62
69 4761 30 90
48 2304
74 5476
74 5476
35 1225
53 2809
77 5929

�xi 1723 610
�xi

2 105,539 17
ix 57.4 25.4

ni 30 24

The formula for the estimated pooled variance is:

)1()1(

)()(

21

2

2
22

2
1

2
12

1
2

−+−

−+−
=
� �

��

nn
n
X

X
n
X

X
s p



581

)124()130(
24

100,372444,17
30

729,968,2539,105

−+−

�
�

�
�
�

� −+�
�

�
�
�

� −
=

        
         

52
8.939,14.581,6 +=

          = 163.87

The calculated t value is --           13.9
)2329(*87.163

4.254.57

11

21

2

21 =
+

−=

��
�

�
��
�

�
+��

�

�
��
�

�

−=

nn
s

xx

P

Since α = 0.05, the corresponding t statistic is between 2.00 and 2.02 for 52 degrees of
freedom.  Because t is greater than 2.00 and 2.02, the null hypothesis is rejected, or
P<0.05 for 52 df; that is, the difference in litter cover between June and September is
statistically significant.

The confidence intervals based on the pooled variance for the individual population
means at 95% are:

i

p

n
s

tx
2

05.0±=µ

7.52
30

87.16301.243.57  L: 11 =−=µ    

   1.62
30

87.16301.243.57L2 =+=

2.20
24

87.16301.242.25  L: 12 =−=µ     

  7.30
24

87.16301.242.25L2 =+=

The confidence intervals can be determined using individual variances for each mean
rather than the pooled variance; however, the pooled variance is a better estimator of the
population's variance.
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11.5.3.1.3 Paired T-Test

When samples are not independent and when there is a positive correlation between the
two sample means, a paired design is appropriate.  Also, a paired test requires equal
sample sizes.  There is no assumption that the variances are equal; however, the
differences between the samples should have a consistent variance (i.e., the variance of
the differences does not increase as the differences themselves increase).

Given percent litter ground cover was determined on plots both in June and September,
do the means represent the same population (Ho µ1 = µ2) or, the alternative hypothesis, do
the means represent different populations (H1 µ1 ≠ µ2) at  α = 0.05 (Table 39).

Table 39.  Litter ground cover data collected at 30 permanent plots in June and
September.

Plot June September Difference
d d2

1 58 27 31 961
2 61 22 39 1521
3 54 4 50 2500
4 54 17 37 1369
5 52 19 33 1089
6 44 19 25 625
7 87 32 55 3025
8 71 33 38 1444
9 65 32 33 1089
10 71 42 29 841
11 82 37 45 2025
12 62 22 40 1600
13 53 25 28 784
14 40 33 7 49
15 66 33 33 1089
16 20 16 4 16
17 52 16 36 1296
18 52 40 12 144
19 58 17 41 1681
20 34 14 20 400
21 65 30 35 1225
22 44 25 19 361
23 48 25 23 529
24 69 30 39 1521
25 48 24 24 576
26 74 40 34 1156
27 74 11 63 3969
28 35 11 24 576
29 53 8 45 2025
30 77 39 38 1444

 ix 57.43 24.76 32.66

�Xd 980
�Xd

2 36930
nd 30
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The variance of the sample differences is --
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The estimated standard error of the mean difference is --
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s
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The t value is greater than the critical t value for α = 0.05; therefore P<0.05 for 29
degrees of freedom.  The null hypothesis is rejected (The means represent the same
population, Ho µ1 = µ2) and the alternative hypothesis is accepted (The means represent
different populations, H1 µ1 ≠ µ2).

The 95% confidence interval is 27.8 to 37.5.

11.5.3.2 Analysis of Variance (ANOVA)

When more than two samples are compared, an Analysis of Variance (ANOVA) is an
appropriate parametric test.  The ANOVA table accounts for the variation of selected
factors of numerous samples simultaneously.  ANOVAs are often used to compare the
effectiveness of different management activities or other applied treatments, for example
as in experimental designs.  The experimental design chosen will determine how the
ANOVA table is constructed.  Differences in the primary factors of  interest can be
examined by removing variability in the data that can be attributed to other factors (e.g.,
natural variability).  ANOVAs can also be applied when comparing conditions or
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measured variables in three or more management units or geographical areas, even if
differences in treatments, stressors, or land uses are unknown. 

11.5.3.2.1 ANOVA Example

We want to test for differences among groups (or treatments) using ANOVA and a post-
hoc multiple comparison procedure.

Data were collected at 5 different training sites (locales) within the same soil type (Table
40).  Cone penetrometer readings were taken to indicate the degree of surface soil
compaction.  Shallow penetration depths indicate increased compaction.  A one way
analysis of variance was performed to test the hypothesis that the sample means for the
five sites are not different from one another.   

Table 40.  Raw soil surface compaction data. 
SITE SAMPLE DEPTH SITE SAMPLE DEPTH

1 1 6.9 6 6.6
2 7.3 7 5.6
3 6.5 8 5.6
4 7.2 9 5.8
5 6.7 10 5.9
6 7.9 4 1 6.7
7 6.4 2 7.0
8 6.6 3 8.9
9 5.6 4 7.1

10 8.1 5 5.5
2 1 7.7 6 6.6

2 5.6 7 5.9
3 7.6 8 7.0
4 6.4 9 5.8
5 8.5 10 5.3
6 5.5 5 1 5.3
7 7.0 2 6.2
8 7.8 3 6.9
9 7.4 4 6.7

10 7.2 5 5.7
3 1 5.3 6 4.6

2 5.5 7 5.3
3 5.9 8 6.9
4 6.3 9 5.6
5 5.8 10 6.5

The F-ration in the ANOVA table is used to test that hypothesis that the slope is zero. 
The F is large (between group error is much larger than within group error) when the
independent variable helps to explain the variation in the dependent variable.  Here there
is a significant linear relationship between compaction and site.  Thus we reject the
hypothesis that the slope of the regression line is zero.  The ANOVA results indicate that
at the 0.05 level of significance, the means for the five sites are not all the same (P value
= 0.0034<0.05) (Table 41).This type of test is similar to doing a number of t-tests, but is
more powerful because the variances are pooled.  Once the ANOVA is completed, a
multiple pairwise comparison can be performed to determine which site (or sites) is
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different from the others.  In this case, the Bonferroni procedure was applied at a 95%
confidence level (see section 11.5 for a discussion of procedures).  The matrix of pairwise
comparison probabilities reveals several significant differences among sites (Table 42). 
The Bonferroni test results indicate significant differences between sites 1 and 3, sites 2
and 3, and sites 2 and 5.  

Table 41.  One-way ANOVA results using compaction data.
Source Sum-of-

Squares
df Mean-

Square
F-ratio P

SITE
(between groups)

12.3412 4 3.0853 4.6011 0.0034

Error
(within groups)

30.1750 45 0.6706

Table 42.  Matrix of pairwise comparison probabilities from a Bonferroni test.  Significant pairwise
differences at αααα=0.05 are highlighted (P<0.05).  Means with the same letter in the summary column
are not significantly different.  

SITE 1 2 3 4 5 MEAN Summary
1 1.0000 6.92 ac
2 1.0000 1.0000 7.07 a
3 0.0468 0.0148 1.0000 5.83 bd
4 1.0000 1.0000 0.4642 1.0000 6.58 ab
5 .1275 0.0435 1.0000 1.0000 1.0000 5.97 cd

11.5.3.3 Correlations and Regression

Correlation and regression analyses test the relationship and the degree of relationship of
two variables to each other.  In correlation analysis, variables are independent of each
other. In regression analysis, the two variables may consist of one independent (i.e., a
fixed variable by the investigator) and one dependent (Model I), or each variable may be
independent of the other (i.e., without investigator control) (Model II).  The difference
between a Model II regression and correlation analysis is the lack of units in correlation
analysis.  With regression analysis, the X and Y variables are compared based on their
units.  Both tests will indicate whether a relationship exists between two variables, but
using different ways (Woolf 1968).

Regression and correlation analyses are two different tests.  While many of the
calculations are similar, each addresses a very different question.  In regression analysis,
the intent is to examine the possible causation of changes in Y  by changes in X for
purposes of prediction and to explain variation.  Causation of change is unknown in
correlation analysis, rather the question is how much do the variables vary together
(covariance) (Sokal and Rohlf 1981)?  There may be a relationship between the variables
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examined by correlation analysis, but  the mathematical model for that relationship is not
of direct concern. 

Biological variables generally have a relationship to other variables.  For example, litter
cover is noted on a series of plots with varying levels of tracked vehicle use.  The
differences in litter cover may or may not be aligned with training activities.  If
differences in litter cover are related to training actives, to what degree?  In this case,
litter cover would be the dependent variable and the amount of  training the independent
variable.  The type of analysis could be either correlation or regression analysis.  If on the
other hand, if we pose the question: Is there a relationship between the amount of litter
cover and the amount of standing biomass on training lands?, then correlation or Model
II regression analysis would be appropriate.  A Model II regression would consider each
variable as independent (i.e., without investigator control).

A scatter diagram is a pictorial method of describing the relationship of two variables
(Figure 4.4-4).  If there is no correlation between the two variables, the line that best fits
the scatter of points is horizontal.  With a positive correlation, the slope of the line
increases as  each variable increases, and with a negative correlation, as one variable
increases, the second decreases.  In some cases, a curved line is the best fit.  Only linear
relationships will be discussed here.

No Correlation Positive Correlation Negative Correlation

Figure 132.  The correlation between two variables can be none, positive (as one variable increases
so does the other), or negative (as one variable increases the other decreases).

Fitting a line to a scatter of data can lead to a bias interpretation of the data.  An objective
method used in regression analysis is least squares; that is, fitting a line through points
that is the minimum value of the summation of the squared deviations (Woolf 1968).  

11.5.3.3.1 Regression Example

The following example compares output for a regression analysis computed with MS
Excel (Tool, Data analysis, Regression) with a step-by-step presentation of the calculation
of the same information.



587

On a military installation, areas are subjected to varying amounts of tracked vehicle
impacts.  We pose the following question: Is there a relationship between the amount of
litter and the amount of tracked vehicle use (Table 43)? 

The question can be addressed by using regression (Model I -- one variable is dependent
on a second variable) or by correlation analysis.  The null hypothesis is Ho β=0, and the
alternative hypothesis is H1 β≠0.  There are some assumptions involved: 1) the amount of
litter within each level of tracked vehicle intensity follows a normal distribution, and 2)
the variances of the populations represented by the various intensities are equal.

Table 43.  Training intensity recorded as percent tracked vehicle disturbance and percent plant litter cover on
15 plots.

PlotID Training  Intensity Litter Cover
Samples Xi Xi

2 Yi Yi
2 Xi Yi

1 23 529 80 6400 1840
2 28 784 78 6084 2184
3 22 484 65 4225 1430
4 29 841 67 4489 1943
5 35 1225 53 2809 1855
6 42 1764 58 3364 2436
7 43 1849 52 2704 2236
8 48 2304 49 2401 2352
9 39 1521 46 2116 1794

10 54 2916 35 1225 1890
11 52 2704 38 1444 1976
12 61 3721 32 1024 1952
13 72 5184 23 529 1656
14 68 4624 34 1156 2312
15 83 6889 29 841 2407

n=15 �Xi=699 �Yi=739 �XiYi=30263
�=46.6 y-=49.3

�Xi
2=37339 �Yi

2=40811

6.765,4
15

)699(339,37
)( 22

22 =−=−=�
�

� n

X
Xx i

i

9.402,4
15

)739(811,40
)( 22

22 =−=−=�
�

� n

Y
Yy i

i

4.4174
15

739)(699(2063,30
))((

−=−=−=�
� �

� n

YX
YXxy ii

ii

The regression coefficient:        88.0
6.765,4
4.174,4

2 −=−==
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�
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It is estimated that for a 1 unit increase in tracked vehicle use there is an 0.88 percentage
point decrease in litter.

If the value b is known, then a from the equation for a slope ( xbya −= ) can be
determined (Table 44).

xbya −=  = 49.3-(-0.88)(46.6) = 90.09

Table 44.  The difference between the observed and the estimated litter ground cover.

PlotID Training
Intensity

Litter Cover –
Observed

Litter Cover --
Estimated

YY ˆ− 2ŶY −

sample
s

X Y Ŷ d d 2

1 23 80 69.9 10.1 101.22
2 28 78 65.6 12.4 154.77
3 22 65 70.8 -5.8 33.81
4 29 67 64.7 2.3 5.37
5 35 53 59.4 -6.4 41.31
6 42 58 53.3 4.7 22.13
7 43 52 52.4 -0.4 0.18
8 48 49 48.0 1.0 0.92
9 39 46 55.9 -9.9 98.48

10 54 35 42.8 -7.8 60.60
11 52 38 44.5 -6.5 42.73
12 61 32 36.7 -4.7 21.65
13 72 23 27.0 -4.0 16.14
14 68 34 30.5 3.5 12.10
15 83 29 17.4 11.6 134.97

Sum =739 Sum =739 Sum =
0.0

Sum =
746.39

Where Ŷ = a + bX = 90.09 + (-0.88)X. 

For PlotID 1    YY ˆ− = 90.09 + (-0.88)(23) = 10.1

The sum of 2)ˆ( YY −  is also referred to as the error sum of squares or d2.  The variance is:

sxy
2= � 2)ˆ( YY − /n-2 = 746.4/13 = 57.41

From these calculations an analysis of variance table for a regression analysis can be
filled.
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If a statistical package is used, only the results are displayed.  MS Excel includes the
ANOVA table and how the variance is partitioned is shown in the output.  In most cases,
a t test is all that is necessary to determine which hypothesis is appropriate.

�y2 = Total sum of squares (Total) 
      = 4402

�d2 = Error sum of squares (Residual)
      = 746.4

�
2Ŷ  = Regression sum of squares

(Regression) is the difference between the �y2 and �d2

       =  �y2 - �d2 = 3656.5

The degrees of freedom (df) are 1 for the Regression, 13 for the Residual (n-2), and 14 for
the total (n-1).  The Mean Squares are calculated for the Regression and the Error
(Residual) by dividing the sum of squares by the degrees of freedom.

The F-value is the Regression Mean Square divided by the Error Mean Square, or

F = 3656.5/57.4 = 63.69
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Since F[1  
130.05] = 4.7 (look up in an F table), the null hypothesis would be rejected.  A 

negative relationship does exist between training intensity (tracked vehicles) and litter
cover.

The t-value can be calculated a number of ways.  One way is to divide the regression or b
by the standard error, or

98.7

6.765,4
4.57

876.0

2

2
−=−==

� x
s

bt
xy

The probability of t at 0.05 is 2.16; therefore P<0.05 for 13 degrees of freedom.

11.5.3.3.2 Correlation Example

While MS Excel includes the correlation coefficient and the coefficient of determination
as part of the regression analysis output, these two values are the products of correlation
and not regression analysis.  The values used to calculate the correlation coefficient,
however, follow the steps for regression.  The correlation coefficient (Multiple R as
identified in MS Excel) is --

911.0
)9.402,4(*)6.765,4(

4.174,4

))(( 22
−=−==

��

�
yx

xy
r

The coefficient of determination (R2) is --

r2 = 0.8305

In other words, approximately 83.05% of the variance in Y (litter) can be attributed to X
(training intensity). If 83.05% of the variation in Y is due to the linear regression of Y on
X then 16.95% remains unexplained.  A table of critical values for correlation coefficients
is presented in Table 72 (Section 11.15 - Statistical Reference Tables).

11.5.4 Non-Parametric Tests

Parametric tests are based on assumptions, such as a random sample and equal variances.
 While an investigator may presume the data meet these assumptions, data are rarely
examined prior to the execution of the desired test.  These and other assumptions



591

associated with parametric tests are very stringent.  Often assumptions are presumed to be
met due to sample size alone.  There are instances when it is apparent the assumptions
will not be met.  These include a small number of samples and a non-normal data
distribution.  In these cases, nonparametric tests may be appropriate.

Also known as distribution-free methods, non-parametric tests are not concerned with
specific parameters, such as the mean in an analysis of variance (ANOVA), but the
distribution of the variates (Sokal and Rohlf 1981). Nonparametric analysis of variance is
easy to compute and permits freedom from the distribution assumptions of an ANOVA
(i.e., the data may or may not follow a Gaussian, bell shape distribution). These tests are
less powerful than parametric tests when the data are normally distributed.  In such cases,
P values tend to be higher, and there is a greater possibility of making a Type II error
(Woolf 1968).  As with parametric tests, the larger the sample size, the greater the power
of a nonparametric test.

Some guidelines for deciding when to apply a nonparametric test (GraphPad 1998):

1) Fewer than 12 samples.
2) Some values are excessively high or low.
3) The sample is clearly not normally distributed.  Consider transforming the data to

convert from non-normal to a normal distribution and then using a parametric test.
4) A test for normality fails.  Be aware that testing for normality requires a dozen or more

categories to be effective.

Keep in mind that nonparametric tests are counterparts to parametric tests (Table 45).

Table 45.  Nonparametric test equivalents of parametric tests.

PARAMETRIC TESTS NONPARAMETRIC EQUIVALENTS

Student's t-Test Kolmogorov-Smirnov, One-Sample

Group Comparison Multi-Response Permutation Procedure
Kruskal-Wallis H
Mann-WhitneyU
Kolmogorov-Smirnov, Two-Sample
Wilcoxon Signed Rank, Not Paired

Paired t Wilcoxon Signed Rank, Paired

Two-way ANOVA; Randomized-Block Friedman 2
rX

Correlation Spearman Rank-Correlation Coefficient
Kendall Rank-Correlation

Another consideration for choosing between a parametric and a nonparametric test is the
type of scale used.  Data based on descriptive scales (e.g., nominal scales -- short, tall;
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ordinal scales -- short, medium, tall, very tall; and some interval scales that may not meet
the assumptions of normal distribution or homogeneous variances) should be tested using
nonparametric tests.  Data described by an interval scale and interval scales with a true
zero point (a ratio scale), should be examined with parametric tests if the test assumptions
are met (Woolf 1968).

The chi-square test and McNemar’s test are presented below.  Both can be calculated
using statistical software programs that provide P values to directly determine statistical
significance. 

11.5.4.1 Chi-Square Test of Independence

The chi-squared test of independence is used  to determine if there is an association or
statistical dependence between two characteristics of a population.  It is appropriate for
determining a change in frequency (proportion) when using temporary sampling units or
comparing differences in two or more samples at a given point in time. This test can be
used where quadrats (frequency sampling) or points (point intercept sampling) are the
sampling units and data is not consolidated to the “plot” level.  Actual frequency counts,
not percentages, are the unit of measurement used by the chi-square test.

In the example presented below (Table 46), the level of tracked vehicle use on different
slopes was categorized as either high or low.  The data can be used to address the
question: is there a relationship between intensity and slope steepness?  Based on that
question, null and alternative hypotheses were developed:

Null hypothesis (Ho): amount of tracked vehicle use is independent of slope steepness
Alternative hypothesis (Ha): amount of tracked vehicle use is dependent on slope
steepness.

The test compares observed frequencies with the frequencies that would be expected if
the null hypothesis of independence were true.  The test statistic employed to make the
comparison is the chi-square statistic (X2):

E

EO
X

2
2 )( −

= �

where O = observed frequency, and E = expected frequency

The observed frequency is the value recorded during data collection.  The expected
frequency is calculated with the following equation:

size sample
  totalcolumn * row total frequency  Expected =
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Contigency tables are used to organize and analyze frequency (or binomial) data (Table
46).  Contingency tables are based on the concept that rows and columns are independent.
 The simplest contingency table is made up of 2 columns and 2 rows (2x2).

 Table 46.  Qualitative data for tracked vehicle use on slopes.

Slopes < 25% Slopes > 25% Totals
High Tracked
Vehicle Use 23 2 25

Low Tracked
Vehicle Use 4 21 25

Totals 27 23 50

The data in the table suggest that there is a tendency for a tracked vehicle use to be higher
on shallower slopes than on steeper slopes.  To test the hypothesis of the independence of
the rows from the columns, it is necessary to determine the expected frequency (E) for the
four cells.  Results are presented in Table 47.  For the first cell, the expected value is:

5.13
50

27 x 25 ==Ε

Table 47.  The observed and the expected frequency of tracked vehicle use in relation to slope steepness. 
Expected values are in parentheses.

Slopes < 25% Slopes > 25% Totals

High Tracked Vehicle Use 23 (13.5) 2 (11.5) 25

Low Tracked Vehicle Use 4 (13.5) 21 (11.5) 25

Totals 27 23 50

The Chi-Square test is used to test the independence of the variables:

06.29
5.11

)5.1121(
5.13

)5.134(
5.11

)5.112(
5.13

)5.1323( 2222
2 =−+−+−+−=χ

This chi-square value of 29.06 is compared to the chi-square value obtained from a table
of critical chi-square values (Section 11.15 Appendix – Statistical Reference Tables). 
The degrees of freedom for determining the critical chi-square value =[(# of rows-1)(# of
columns-1)] d.f.  In this case, the degrees of freedom are equal to (2-1)*(2-1) = 1.  The
critical chi-square value from the table using P<0.10 is 2.706.  The calculated chi-square
value of 29.06 is greater than the critical value, so we reject the null hypothesis of no
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difference in amount of vehicle use. The rows (Tracked Vehicle Use) and the columns
(Slope Steepness) are not independent of each other.  Based on the sample data, we can
conclude at a 90% level of confidence that tracked vehicle use is significantly higher on
slopes <25% compared to slopes <25%.  The p-value can be interpolated using the chi-
square table of critical values.

Contingency tables and chi-square tests can be prepared for multiple samples and/or
years.  The procedures are the same as those used for the 2x2 contingency table. 
Interpretation of the Chi-square results follow those for interpreting ANOVA results: a
rejection of the null hypothesis only indicates that at least one of the proportions is
significantly different.  The results do not indicate which sample proportion is different.  

11.5.4.2 McNemar’s Test

McNemar’s test is applied to frequency data collected on permanent plots, where some
independence is assumed between samples.  As with chi-square applications, the data
consists of frequency data where a quadrat or point is considered the sampling unit. 
The structure of the contingency table for the McNemar’s test is identical to the setup for
the chi-square test. McNemar’s test cannot be used to compare more than two years of
data (no more than 2x2 table).  Table 48 contains sample frequency data for Species X,
which was sampled using 116 permanently-located frequency frames in both 1997 and
1999.  Results of chi-square and McNemar’s test are presented in Table 49.  For the
equation for calculating the McNemar statistic, see Zar (1996).

Table 48.  Contingency table or cross-tabulation table for McNemar’s test.

1997 1999 totals
present 73 64 137
absent 43 52 95
totals 116 116 232

Table 49.  Chi-square and McNemar’s test statistics and probabilities.
Test statistic Value df Prob
Pearson Chi-square 1.444 1.000 0.230
McNemar Chi-square 3.528 1.000 0.060

The calculated P value is less than the threshold P value of 0.10.  Therefore, we reject the
null hypothesis that the proportions are the same for 1997 and 1999; the frequency of
species X is significantly lower in 1999.  If the same data were produced using temporary
quadrats and the chi-square statistic were calculated, a significant difference would not
have been found (accept Ha, P value = 0.23>0.10).  A threshold p value of 0.05 would
have resulted in our not rejecting the null hypothesis.
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11.5.4.3 Wilcoxon Signed Rank Test

This test is used when there is a presumed underlying continuity in the data.  The null
hypothesis is: There is no difference in the frequency distribution of plant litter between
the spring and fall data collection periods (Table 50).  α= 0.05.  There are 10 samples
when the pair with a difference of zero is dropped.  If more than 20% of the observations
are dropped, this procedure is not an appropriate test.

Table 50.  Plant litter cover estimated during spring and fall collections. 

Plot Number Spring Fall Difference Rank

1
2
3
4
5
6
7
8
9
10
11

54
52
61
82
87
71
71
65
19
54
27

17
19
22
22
32
33
37
42
44
54
58

37
33
39
60
55
38
34
23
-25
--
-31

6
4
8
10
9
7
5
1
-2
--
-3

T = |5|

The difference per plot is determined and all samples are ranked by the absolute value of
the difference.  Once ranked, the number of negative and positive samples is determined
(in this example 8 of the samples are positive and 2 are negative).  The values for the less
frequent sign (negative) are summed (-2 + -3 = |5|).  This is T.

Using a Wilcoxon Signed Rank Test table, T α(n=10) = 8 (two-sided test); therefore, P<0.05
and the null hypothesis is rejected.  In other words, for 10 pairs a rank sum < 8 is required
to reject the null hypothesis at 5%.  Because 5 is less than 8, the null hypothesis is
rejected; There is no difference in the frequency distribution of litter between the spring
and fall data collection periods.  Based on the Wilcoxon Signed Rank Test for 10 pairs
and an α = 0.05, we can conclude that there is a difference in the frequency distribution of
litter between the two seasons.

11.5.5 Multivariate Analyses

Multivariate Analysis encompasses a variety of statistical techniques that allow a user to
examine multiple variables using a single technique.  For example, whereas traditional
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univariate comparison techniques like t-tests and the chi-square test can be very powerful,
one can only interpret the results based on the analysis of one manipulation variable. 
Multivariate techniques allow for the examination of many variables at once.

There are many different types of multivariate techniques that can be applied to
vegetation analysis. It has traditionally been used by researchers and managers to identify
plant communities, define successional trends, or pick out unusual plant assemblages as
well as other uses.  Several techniques have been developed specifically with vegetation
analysis in mind.  These include Detrended Correspondence Analysis (DCA) (Hill and
Gauch 1980), Canonical Correspondence Analysis (CANOCO) (ter Braak 1987), and
TWINSPAN (Hill 1979).  Other techniques that were developed for applications other
than natural resource management are Principal Component Analysis (PCA) (SAS
Institute 1996), Cluster Analysis(CA) (SAS Institute 1996), and various other
discriminate analysis techniques.  PCA and CA will  be examined in this section because
they are effective tools which are supported by affordable statistical software packages.

Multivariate techniques can be very powerful, but their results must be interpreted with
care.  Some techniques are sensitive to particular data types and require that data be
distributed normally.  Others cannot be used with non-linear (e.g. classification)
variables.  Sometimes the techniques only identify trends, without statistical assurances
regarding the confidence of the results.  When using multivariate techniques, it is
important to understand their respective intended uses, strengths, and limitations.

For discussions of ordination and multivariate techniques, see Ludwig and Reynolds
(1988),  Mueller-Dombois (1974), and Jongman et al. (1987).   Information, references,
and internet links are provided by “The Ordination Web Page” at
http://www.okstate.edu/artsci/botany/ordinate/.

11.5.5.1 Principal Component Analysis (PCA)

PCA is used to examine relationships among several quantitative variables.  The
technique is particularly good at detecting linear relationships between plots of varying
species composition, density, and cover (SAS Institute 1996).  For Example, plots of
principal components are an excellent way to conduct preliminary analysis of a vegetation
classification scheme, in preparation for developing a vegetation map for an installation.

Principal components are computed as linear combinations of the variables used in the
analysis, with the coefficients equal to the eigenvectors of the correlation or covariance
matrix.  The eigenvectors are customarily taken with unit length.  The principal
components are sorted by descending order of the eigenvalues, which are equal to the
variances of the components.

When applied correctly, PCA is powerful for preliminary analysis of vegetation datasets,
especially for analysis of plant community data.  It is particularly effective as a means for
clustering  survey plots of similar composition, density, or cover.  Univariate techniques
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such as analysis of variance (ANOVA) can subsequently be used to compare the principal
components of the ordination.

11.5.5.1.1 PCA Example

The goal of this analysis is to examine whether the plant community definitions we’ve
applied to the belt transect plots are reasonable and appropriate for these plots, by
examining the similarities and dissimilarities of the plots.

The results of a Principal Components Analysis of woody species cover for 208 transects
from a southeastern U.S. installation is presented in Figure 133.  Raw data format is
presented in Table 51.  The plots were classified according to vegetation map categories
to facilitate visualization of results.

Principle Component Analysis, Example Dataset
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Figure 133.  Principal Component Analysis of woody species densities from LCTA plots on a
Southeastern U.S. Military Base.  The X and Y axis variables are unitless.
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Table 51.  Subset of the data used in the principal component analysis and the cluster analysis
example.  Values shown are cover % of plant species (shown in columns) for each plot.

Plot ACNE2 ACRU ACSAF AEPA ALSE2 AMAR3 …
1 0 0 4 0 0 0 …
2 0 0 0 0 0 0 …
3 0 44 0 0 18 0 …
4 0 12 0 0 1 0 …
5 0 0 0 0 0 0 …
6 0 1 3 0 0 1 …
7 0 0 0 0 0 0 …
8 0 0 4 0 0 1 …
9 0 0 0 0 0 0 …

10 0 2 0 0 0 0 …
11 … … … … … … …

The PCA yields n-1 principal components for n variables in an analysis.  The first two
principal components provide the most information, in this case accounting for over 96%
of the variance in the model.  For this example we used canopy cover of all plant species
with at least 10% cover.  For analyses of this type, uncommon taxa do not contribute
substantially to vegetation classification analysis since their effects are masked by the
most abundant taxa.  This is not to say that uncommon taxa should not be evaluated using
PCA.  To do so, one should structure the dataset to include the taxa of interest, and
eliminate from the dataset the dominant taxa that may mask the effects of the uncommon
taxa on the ordination.

A visual examination of Figure 133 indicates that points for deciduous forest and wet
deciduous forest occupy the same space in the ordination.  Mixed Forest types are
clustered toward the left, and grasslands and pine plantations tend toward the top.  There
is, however, substantial visual overlap between the groupings, which suggests that shrub
and understory species may be contributing significantly to the ordination model.

Analysis of variance of the principal components based on the preliminary vegetation
classification indicates that most of the groups have a statistical basis for the groupings
assigned by the field crews.  The analysis also points out,  however, that there is
substantial variation within the Pine Plantation classification, suggesting that other factors
other than the reforestation management regime may be a factor in defining the dominant
vegetation in the plots.

The ordination of the pine plantation data suggests that a single classification may not be
appropriate for those plots.  Running a PCA ordination on just the Pine Plantation data
yields the ordination shown in Figure 134.  Note that the locations for the points on this
diagram are quite different from those in Figure 133.  It is important to note also that
results of an ordination will vary greatly depending upon the contents of the dataset.  The
resulting ordination will place plot points in very different points in ordinal space
depending on whether the data contains plots from a single vegetation classification type
or several different classification types.
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Principle Component Analysis, Example Dataset
Pine Plantation Plots
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Figure 134. Principal Component Analysis of plant cover from Pine Plantation monitoring plots on a
Southeastern U.S. Military Base.  The X and Y axis variables are unitless.

An analysis of variance of the principal components indicates that the three points in the
upper right corner of the diagram are outliers.  This suggests that these three plots may
have vegetation characteristics that distinguish them in some way from the other plots. 
At this point it seems appropriate to examine the dominant vegetation in these plots and
determine what the source of the variation may be.

11.5.5.2 Cluster Analysis

Cluster analysis hierarchically clusters observations or samples based on the coordinates
of the observations.  That is to say, it uses separating algorithms to analyze the
differences and similarities of a group of points in a two-dimensional space, and then
separates the points in a hypothetical set of clusters based on their locations in the x-y
plane and their relative distances from one another. 

In order to utilize cluster analysis, one must first use some type of ordination technique to
produce coordinates in ordinal (x, y) space that represent the various observations in your
dataset, and then use cluster analysis to define the various clusters that may be present. 
The PCA example used in section 11.5.5.1.1 is just one type of ordination technique that
can be used prior in cluster analysis.  For this example we will use the SAS CANDISC
procedure, which is a form of canonical discriminate analysis (SAS 1996).
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11.5.5.2.1 Cluster Analysis Example

The first step after conducting the ordination is to determine the hypothetical number of
clusters that the ordination has produced.  Field crews identified nine different forest
types, so it makes sense to ask the cluster analysis algorithm to attempt to divide the data
into nine clusters.  The first example of this, however, produces chaos on the ordination
diagram. Figure 135 shows the results of the analysis, without the clusters assigned.  One
can see that it is difficult to imagine nine different clusters of points in the analysis, and
Analysis of variance of the coordinates of the clusters indicates that there is no statistical
basis for producing nine different clusters.  Careful inspection of the ordination diagram
indicates, however, that there appear to be three relatively obvious clusters of data points.

Cluster Analysis
Results of CANDISC Procedure
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Figure 135 . Ordination diagram of the example dataset, showing x-y positions of the 208 LCTA plots
based on the first two coordinates produced by the ordination.

Specifying that only 3 clusters be produced in the cluster analysis produces the ordination
diagram shown in Figure 136 .  Analysis of variance of the x and y coordinates
establishes that there is a statistical basis at the .05 level for separating the LCTA plots
into three clusters. 

Table 52 shows how the relative proportions of the vegetation types are separated by the
three clusters.  A subjective analysis of the forest types indicates that the analysis tends to
cluster coniferous forest/ woodland types toward the bottom of the diagram and
deciduous types toward the top.  There are numerous other factors that appear to be
involved, however, as there are exceptions to this trend.  Whereas pine plantation plots
are placed in clusters 2-3-1 (in order of importance), evergreen forest plots are placed in
clusters 1-2-3 and evergreen woodland plots are placed in clusters 2-1-3.
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Discussions with the field crews and the installation forester indicate that seeded pine
plantations are frequently located according to their proximity to roads within the
installation.  In many cases pine plantations were started in areas that were previously
cleared of deciduous vegetation or previously were grasslands, and the dominant
understory vegetation persists throughout the stands.  The vegetation classification is
based primarily upon the dominant vegetation within the plots.  The dataset used for this
analysis includes the several dozen smaller shrub, herb, and graminoid species in addition
to the tree or large shrub overstory species.  Hence, one may conclude that the vegetation
classification system used should be expanded to include dominant understory vegetation
as well as overstory species.  It might be prudent to examine other edaphic factors at the
plots, such as soil type, slope, aspect, and relative age of the forest in defining the
dominant vegetation classification.

Cluster Analysis
Results of CANDISC Procedure
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Figure 136. Results of the cluster analysis with three hypothetical clusters specified.

Table 52 .  Results of the Cluster Analysis.  The relative percentage of the number of plots by
vegetation type are shown. 

Forest Types*
Cluster DF DW EF EW GR MF PP WDF

1 12.21 2.33 11.63 1.16 3.49 3.49 0.58 3.49

2 1.16 1.74 9.3 2.33 4.07 7.56 8.14 0

3 9.88 0.58 2.91 0.58 0 4.07 2.33 5.23
*DF = deciduous woodland  DW = deciduous woodland  EF = evergreen forest  EW = evergreen
woodland  GR = grassland  MF = mixed forest  PP = pine plantation  WDF = wet deciduous forest
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11.5.5.3 Summary

This section described various analysis tools and demonstrated applications to monitoring
data.  Natural resource managers are rarely limited in the type of analyses they can use. 
Whereas the statistics mantra “the experimental design determines the type of statistical
analysis” is very often true, it does not restrict the analyst to conducting other types of
analyses that he or she determines to be prudent.

Whereas the above examples were based upon cover, a measured variables,  other
variables such as stem density or biomass estimates could be used.  Ordination can also
be done on soil classification data, soil loss estimates, or combinations of these types of
data.  Ordination is useful for combining a large number of variables and using them to
uncover trends or patterns that are otherwise not evident.

Ordination techniques described are very powerful, but the results can be misleading if
misapplied.  It is imperative that the resource manager become familiar with the
techniques and apply them as carefully as possible to the resource management questions
that he or she is investigating.
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11.6 Interpreting Results

The interpretation of monitoring results analyzed using confidence intervals is discussed
in section 11.3.  Based on results, the interpretation can be made that a threshold is
crossed/met, when dealing with threshold objectives, or that the threshold or target was
not met/crossed.  Interpretation of confidence intervals or limits is straightforward and the
results are easy to communicate with a variety of audiences.  However, just because a
threshold falls within the confidence interval for a sample mean, there is still some
possibility that the sample mean is either below or above the true population mean, since
the true population mean may fall anywhere within the confidence interval, at the
specified level of confidence.

Interpreting the results of statistical tests is superficially straightforward. However,
interpretation goes beyond simply stating the decision rule associated with the null
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hypothesis, especially when the monitoring objective involves change detection.  A
decision key to interpreting quantitative monitoring results is presented in Figure 137.

change has
ecological

significance?
perform post-hoc
power analysis

(one or both)

yes

RED flag - take
appropriate action

if change is
undesirable
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large

MDC
acceptable

GREEN flag - have
confidence in results - there

probably was no change

AMBER OR RED flag - a change
may have been missed.

Precaution actions may be
appropriate.  Modify monitoring

approach to increase power

GREEN flag - have
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probably was no change

statistically significant result?

no

yes no

Figure 137.  Interpreting the results from a statistical test examining change over time (adapted from
The Nature Conservancy 1997).

Interpretation of results will depend on what constitutes an ecologically significant
change in the resource of interest and the statistical power or minimum detectable effect
size (MDC) associated with the sample data.  In most cases, given the cost of monitoring,
the MDC specified in the monitoring objective should probably not be smaller than one
that is biologically significant.  Natural variability plays a role in determining the
minimum detectable effect size.  For example, if number of oak seedlings varies on
average by 25% from year to year, then specifying a relative minimum detectable change
of 10% may result in a costly sampling program that detects a significant change (10%)
that is not ecologically significant.  In the case of the oak seedlings, specifying a relative
MDC of 50% might be more realistically achieved at significantly reduced cost.  

Statistical power or MDC size can be calculated using post-hoc power analysis.  If the
statistical test of differences between time periods shows no statistical difference, it may
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be that a change has in fact occurred but that the design used had low statistical power,
which translates into the ability to only detect a relatively large change.  Therefore, before
you conclude that the null hypothesis is true (no change took place), determine the power
of the test.  Perhaps the sample sizes were too small , or the background variation too
large, to determine any but the largest differences between treatments or samples.  A
nonsignificant but obvious trend suggests that the null hypothesis should not be accepted,
but it cannot be rejected either (Fowler 1990).  Examples and discussion of post-hoc
power analysis and minimum detectable change calculation are provided in section 3.1.6
(Hypothesis Testing and Power Analysis).

11.7 Climate Data Summarization

11.7.1 Sources of Climatic Data

Climatic data is available from a number of sources.  They include published records
available through libraries, national weather service data, private sources which provide a
wide range of regional or global climatic data, state or county agencies or services, local
airports and airfields, or collection by the installation itself using meteorological
equipment or stations.  Extensive meteorological data, including current conditions and
long-term summaries, are available from a number of sources at no cost on the World
Wide Web.  The principal variables of interest include precipitation, temperature, wind
direction and speed, evaporation rates, and relative humidity.  In some geographic
regions, seasonal and yearly variations in climate greatly influence the response and
growth of vegetation.  In these cases, and where sampling designs permit, tools such as
analysis of covariance may be helpful in accounting for variability due to climate vs.
variability due to other factors.

11.7.2 Probability of Weekly Precipitation and Climate Diagrams

Historical data can be used to predict the likelihood of climatic and soil moisture
conditions during the course of the year.  If training exercises, especially those involving
mechanized vehicles, are scheduled during periods where the likelihood of wet soils is
high, then vegetation loss, soil compaction, and erosion losses are likely to be relatively
high compared to periods of drier soils.  In general, damage to soil and vegetation
associated with training activities is minimized during periods of dry and frozen soils
compared to moist or wet soils.  Several graphic tools have been developed to help
understand seasonal patterns of precipitation and soil moisture: 1) probability of weekly
precipitation graphs, and 2) climatic diagrams developed by Walter (1985) and modified
for applications in military land management (Tazik et al. 1990).  Probability of weekly
precipitation graphs and climatic diagrams are discussed and examples are presented in
Tazik et al. 1990.
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11.7.2.1 Probability of Weekly Precipitation

The probability of weekly precipitation is defined as the likelihood of receiving more than
a given amount of total precipitation during a specified 1-week period.  Probabilities are
typically based on long-term records (25-30 years of data).  A moving average can be
used to smooth weekly values by using the mean of the previous, current, and following
weekly values for the current value.  From a military training standpoint, probability of
weekly precipitation uses include planning of water crossings on intermittent streams,
testing equipment under wet or dry conditions, and minimizing the need for rescheduling
range activities, weapons instruction, and equipment use.  In terms of land management,
the probability graphs are useful to identify optimum periods for seeding, tree and shrub
planting, and  acquiring cloud-free satellite imagery (Tazik et al. 1990).  A calendar of 1-
week periods and exemplary weekly data is presented in Table 53.  Weekly probability
data is presented in graphic form in Figure 138.  Data may also be presented using line
graphs, with each line representing a specified minimum precipitation threshold.  For the
location represented in Figure 138, the probability of precipitation is generally high. 
Precipitation probabilities are lowest in October (weeks 40-43).  Precipitation generally
peaks during March, July-August, and December.  Seasonal patterns of precipitation are
highly influenced by geographic location and local or regional physiography, and are
therefore more pronounced in some locations relative to others.

11.7.2.2 Climate Diagrams 

Because soil moisture is greatly influenced by both the amount of precipitation received
and temperature, which greatly influences evaporation and transpiration, integrating the
two variables provides a useful management tool.  The purpose of the modified Walter
climate diagram is to : 1) synthesize temperature and precipitation in order to represent
soil moisture conditions, 2) illustrate the approximate length of the growing season and
period of frozen soils, and 3) characterize average monthly precipitation and temperature.
 Use of the diagram can enhance land management efforts by identifying periods where
the risk of damage to vegetation and soils is elevated. 

An interpretive guide to the climate diagram is presented in Figure 139.  The diagram is
constructed by plotting both average monthly temperature (°C) and average monthly total
precipitation (millimeters) on an year-long time scale in months.  Temperature and
precipitation are scaled at 1 °C = 2 mm of precipitation.  Where the temperature curve is
above the precipitation curve, conditions are increasingly arid.  Where the temperature
curve is below the precipitation curve, conditions are more humid.  Soil moisture should
reflect these predominant climatic conditions.  In cold climates, several lines are added to
the diagram to enhance utility to the training and land management community (Figure
140).  One line is placed across the diagram at 10 °C.  The period where the temperature
exceeds 10 °C is generally considered the growing season, assuming soil moisture is
available.  The second line, representing the point of freezing for soils, is drawn at 0 °C. 
If soil moisture is present, soils will freeze at or below this temperature.  During periods
of frozen soils, off-road maneuvers (including both mechanized and motorized vehicles)
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have minimal impacts to soil structure.  Additional examples of climatic diagrams for
locations in the southeastern and northwestern U.S. are presented in  Figure 141  and
Figure 142.  Where a significant proportion of winter precipitation is received as snow,
soils may be wetter than indicated by the diagram during periods of snowmelt.

Graphic and or statistical examination of climatic data is also useful in understanding
interannual variability, especially in arid climates, where yearly fluctuations in
temperature and precipitation or patterns thereof can have significant ecological
responses.  Figure 143 illustrates year to year variability in temperature and rainfall
patterns relative to the long-term averages.  It is evident that while temperatures for all
years approximated the long-term mean, patterns of precipitation varied widely in some
years.  Spatial variability of climatic variables is also considerable where localized events
or physiographic effects result in large variations in climate within the same installation. 
  For example, Figure 144 contains precipitation data collected from seven weather
stations within a watershed on a Great Basin installation.  Even though total annual
precipitation may be the same for different locations, the temporal distribution can differ
significantly.
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Table 53.  Example of format of weekly climatic data used to construct long-term averages and
calculate probabilities of weekly precipitation.

YEAR WEEK DATES PRECIP
(mm)

AVG MAX
(deg. C)

AVG MIN
(deg. C)

AVG MEAN
(deg. C)

1965 1 JAN 1-7 5.1 19 5 12
1965 2 JAN 8-14 10.2 12 1 7
1965 3 JAN 15-21 27.9 15 -1 7
1965 4 JAN 22-28 11.4 17 1 9
1965 5 JAN 29-FEB 4 37.8 11 -2 4
1965 6 FEB 5-11 24.4 22 11 17
1965 7 FEB 12-18 78.5 13 2 7
1965 8 FEB 19-25 8.9 15 0 7
1965 9 FEB 26-MAR 4 30.2 15 4 10
1965 10 MAR 5-11 54.1 12 2 7
1965 11 MAR 12-18 23.9 20 7 13
1965 12 MAR 19-25 29.0 22 9 15
1965 13 MAR 26-APR 1 3.0 22 11 17
1965 14 APR 2-8 2.8 27 15 21
1965 15 APR 9-15 1.8 26 12 19
1965 16 APR 16-22 2.0 27 13 20
1965 17 APR 23-29 0.5 26 12 19
1965 18 APR 30-MAY 6 0.0 30 11 21
1965 19 MAY 7-13 0.0 32 15 23
1965 20 MAY 14-20 19.1 32 17 24
1965 21 MAY 21-27 25.9 32 19 26
1965 22 MAY 28-JUN 3 46.7 31 18 24
1965 23 JUN 4-10 25.1 29 21 24
1965 24 JUN 11-17 17.8 28 20 24
1965 25 JUN 18-24 5.6 30 18 24
1965 26 JUN 25-JUL 1 2.3 32 21 27
1965 27 JUL 2-8 74.9 31 21 26
1965 28 JUL 9-15 5.8 30 22 26
1965 29 JUL 16-22 8.6 32 21 26
1965 30 JUL 23-29 62.2 31 22 27
1965 31 JUL 30-AUG 5 52.1 31 20 25
1965 32 AUG 6-12 63.5 30 21 25
1965 33 AUG 13-19 5.6 32 22 27
1965 34 AUG 20-26 4.1 33 21 27
1965 35 AUG 27-SEP 2 28.2 30 20 25
1965 36 SEP 3-9 6.1 30 19 24
1965 37 SEP 10-16 0.0 32 21 26
1965 38 SEP 17-23 2.5 30 19 24
1965 39 SEP 24-30 48.5 25 19 22
1965 40 OCT 1-7 31.8 24 14 19
1965 41 OCT 8-14 1.3 27 13 20
1965 42 OCT 15-21 0.3 22 14 18
1965 43 OCT 22-28 0.0 20 3 12
1965 44 OCT 29-NOV 4 0.0 24 8 16
1965 45 NOV 5-11 17.8 22 10 16
1965 46 NOV 12-18 0.0 20 7 13
1965 47 NOV 19-25 23.9 21 9 14
1965 48 NOV 26-DEC 2 0.0 14 0 7
1965 49 DEC 3-9 0.0 18 -2 8
1965 50 DEC 10-16 42.7 15 9 12
1965 51 DEC 17-23 26.2 16 1 8
1965 52 DEC 24-21 0.0 19 3 11
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Figure 138.  Probability of weekly precipitation of 0 mm (no precipitation), greater than 13 mm,
greater than 25 mm, greater than 38 mm, and greater than 51 mm.  Data is from  a southeastern
Army installation.
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Figure 139.  Interpretation guide to modified Walter climate diagrams.  Reprinted from Tazik et al.
1990.
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Figure 140. Climatic diagram for an installation in the Great Basin,  based on long term (30 year)
temperature and precipitation records.
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Figure 141.  Climatic diagram for an installation in the southeastern United States, based on long
term (30 year) temperature and precipitation records.
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Figure 142. Climatic diagram for an installation in the northwestern United States, based on long-
term  temperature and precipitation records.
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Figure 143.   Monthly mean temperature (A) and precipitation (B) for a five year period compared to
long-term averages (southeastern U.S.).
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Figure 144.  Means and standard errors for precipitation by month for seven weather stations within
a large watershed (Great Basin data).

11.8 Extrapolating Results

Statistical extrapolation is the process of estimating or inferring beyond the known range
based on a sample of known values.  Making inferences about an administrative unit, and
management unit, or an ecological unit requires that samples are collected and
summarized according to certain principles.  Sampling design and plot allocation
determine the targets and limitations associated with sampling, and should guide the
process of estimating parameters for the populations or communities represented. 
Sampling design and the concept of target populations is introduced in Chapter 3.
Samples must be aggregated in order to make inferences about the population of interest.
 A minimum of 2 samples is required to generate a measure of variability for a sample
mean.  Considerably larger sample sizes are required to provide acceptable levels of
precision . 

The method of sample extrapolation is sometimes provided by the method of plot
allocation.  Simple random samples are in no way constrained – every possible location
has an equal chance of receiving a sample.  If any areas are excluded from the allocation,
statistically speaking they are not represented by the sample.  Simple random samples can
be aggregated (i.e., grouped) using any variable.  Allocation in proportion to area ensures
that sampling intensities are equal within the specified geographic boundaries of the study
area.  Grouping variables that reduce heterogeneity are the most advantageous. 
Subjectively located plots, including macroplots, only represent the plot or area sampled;
results cannot be extrapolated statistically beyond plot boundaries.

11.8.1 Grouping Data

Post-sampling stratification involves stratifying or grouping a sample after the data is
collected (Snedecor and Cochrane 1980).  Grouping the data by strata typically results in
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groups that are more homogeneous than the sample as a whole.  Strata often used include
vegetation types, soil types, and land-use types. 

Stratified random sampling typically draws upon existing knowledge, information, or
pilot data to delineate strata and assign a given sample size to each allocation category.  In
some cases the sample sizes are equal among strata, but most often the sample sizes are
unequal.  Because all samples are  allocated randomly in a stratified random allocation,
plot locations are by definition unbiased.  For this reason, it is not uncommon to re-
aggregate sample data into groups that are different from those used in the original
allocation.  In so doing, data analysis and examination is more flexible and may reveal
patterns or differences that are not readily apparent using the initial stratification scheme.
 However, care must be taken to ensure that samples are both random and unbiased.  For
example, if a high proportion of samples is allocated in a small portion of the area of
interest, then that area is represented by a larger proportion of samples than other areas or
strata within the larger area of interest.  In such a case, aggregating samples using a
simple average mathematical function may result in bias because a large proportion of the
samples represent a smaller area that may or may not be representative of the larger area
of interest.

Some strata are well-suited to some types of analyses and poorly suited to others.  For
example, examining data using drainage or watershed boundaries is logical from the
standpoint of hydrological response, soil erosion, and water quality.   However, watershed
boundaries may not be logical divisors of vegetation communities, soil types, or
ecological communities (unless the divides consist of high mountain divides that present
significant obstacles to species migration, as in the case of weed distribution and
movement). 

For example, data summaries are often requested using military training areas or other
administrative boundaries used by the training community, and to some extent the natural
resource management community.  However, these boundaries are largely artificial in
nature, often bearing no relationship to natural features of the landscape and sometimes
represented by roads and arbitrary straight lines.  For example, a large portion of most
installation boundaries and impact areas are delineated using straight lines that often
correspond to grid coordinates, county boundaries, or other artificial divisions.  Using
administrative boundaries as a grouping variable will likely result in high variability for
the attributes examined.

The list of possible grouping variables for summary and analysis is similar to that used
for stratified random plot allocation:

• military training areas or other administrative boundaries
• types of training activity/land use
• potential training type (maneuver, bivouac, dismounted only)
• vegetation type/plant community classification type
• ecological land classification
• land maintenance activity



615

• erosion evidence
• evidence of burning
• soil physical & chemical properties
• soil series
• erosion potential or current erosion status based on estimates
• aspect
• slope steepness
• presence of plants of concern
• rangesite (Western NRCS classification found in soil surveys)
• range condition (objective or subjective, qualitative or quantitative)
• watershed or subwatershed
• habitat or community type (from local, state, regional, heritage or other classification)
• landcover/soil type following original LCTA allocation methods (Tazik et al. 1992):

integrates historic and current disturbance with potential vegetation
• historic land use
• elevation
• precipitation zone
• multivariate analysis (vegetation composition, site characteristics, soil chars, etc.) –

post-hoc aggregation/grouping.

Care should be taken when using the sample data itself to create post-hoc strata or
grouping categories.  Remember that in most cases, plot allocation is done on a spatial
basis.  That is, samples are allocated to discrete areas that are identifiable and have
meaning.  If, for example, it is decided that all (randomly allocated) burned plots will be
aggregated and that all unburned plots will be similarly aggregated, the results may be
informative and descriptive, and variances will probably be reduced.  However, if the
burned and unburned areas cannot be represented by geographic boundaries ( i.e., are not
mapped), then the results can be extrapolated to burned and unburned areas only, and not
to parcels delineated on a map.

11.9 Linking LCTA and Remote Sensing Data

Data for ground truthing remotely-sensed data is often required in many applications
utilizing remotely-sensed data.  Such applications include change detection,
classification, and classification accuracy assessment.  In many cases, monitoring (e.g.,
LCTA) data can be utilized as ground-truth data for classification or accuracy assessment.
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11.9.1 Assess Land Condition and Trends

Monitoring data has the potential to be used to detect changes in resource condition
(Senseman et al. 1995).  Since monitoring information is often based on a random
sample, it alone may be inadequate for detecting the locations and amount of change that
occur across the landscape.  This problem may be compounded by inadequate sample
sizes .  However, by using plot  data and remotely-sensed data such as multi-spectral
satellite imagery, it may be possible to identify and quantify change where no field data
were collected through the geographic extrapolation of sample data.

A general approach for linking monitoring data with remotely-sensed data for land
condition and trend analysis is to determine the relationship between the field data and
the remotely-sensed data.  Developing a vegetation index is a typical example (Senseman
et al. 1996).  In effect, the remotely-sensed data is used as an indirect means to document
resource condition, thus permitting land condition analysis where no monitoring data
were directly collected.  By repeating this procedure in subsequent years, it is possible to
determine if and where change (i.e. trends) has occurred.

11.9.2 Classify and Ground Truth Remotely-Sensed Images

Whether using aerial photography or multi-spectral satellite imagery, monitoring data
provides an opportunity for ground truthing remotely-sensed data.  Monitoring data can
be used in landcover mapping and its subsequent accuracy assessment.  Splitting the
LCTA data into two data sets makes it possible to use the data for both applications.  The
same plot data cannot be used to both develop and assess a map because of the high
correlation that would be expected at those points regardless of the overall quality of the
map or classification.
Remotely-sensed data is often used to derive information related to landcover, such as a
vegetation map.  Multi-spectral satellite imagery is often used to map general landcover
types.  Plot and other monitoring data can be used in the supervised classification of this
remotely-sensed data.  In this type of application, the sample data would be used to
“train” the supervised classification.

Accuracy assessment of vegetation maps is another potential application.  A vegetation
map may be derived from the processing of multi-spectral satellite imagery of from
traditional aerial photography interpretation.  In either case, LCTA or other site-based
data can be used to calculate statistics for an accuracy assessment of the vegetation map. 
If a sufficient number of LCTA plots is available, then the data may be used as both
training data for the  supervised classification of satellite imagery and the subsequent
accuracy assessment of the resultant map.  The LCTA data must be split into two data
sets for the dual use of the data. Accuracy assessment procedures are described in detail
by Senseman et al. (1995). 
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An excellent general resource to application of remote-sensing is Bright et al. 1997.  This
document provides a comprehensive overview of remote sensing applications for land
management.

11.9.3 Accuracy Assessment of Classified Vegetation and Imagery

It is very common for an installation to have a vegetation map produced from remotely
sensed data.  Applying an image classification algorithm to the sensed data identifies
vegetation types.  Often this map is used in plot allocation.  For the information derived
from this map to be useful in decision making, its accuracy must be assessed.  One way to
achieve this is perform a site-specific error analysis, which compares the remotely sensed
data against a "true" map of the area, or reference map.  A reference map can be derived
from sample data of the area.  The LCTA plots were allocated using a stratified random
method, which is an appropriate sampling method for accuracy assessment.

11.9.3.1 Data Needs

The data necessary for the analysis consists of the plot number, vegetation type from
remotely sensed data image classification, and the plant community as determined from
field surveys or plant community classification of field data.  Any valid plant community
classification can be used.

An error matrix is then constructed using the data mentioned above.  An error matrix is
derived from a comparison of a reference map to the classified map.  Calculated plant
communities represent the reference map and form the columns.  The classified data form
the rows.  The error matrix is shown in Table 54.

Table 54. Error matrix for classification and reference data.
Reference Data

Classified Data Dense
Woodland

Open
Woodland

Grassland Sparse/
Barren

Row
Marginals

Dense Woodland 30 0 0 0 30
Open Woodland 3 27 0 0 30
Grassland 0 0 30 0 30
Sparse/Barren 0 0 0 20 20
Column
Marginals

33 27 30 20 110

The row marginals in the error matrix are simply the sum of the row values and the
column marginals are the sum of the column values.  The row marginals represent the
number of plots in each classified category.  The values in each cell across a row
represent the number of plots in the category that fall into the reference data category. 
For example, the open woodland classified category contains 30 plots, 3 of which were
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classified as dense woodland using the plant community classification.  The remaining 27
plots were classified as open woodland.

11.9.3.2 Determining Sample Adequacy for Accuracy Assessment

The first step is to determine if there are a sufficient number of plots, reference points, for
an overall accuracy assessment of the classification.  It has been shown that a minimum
sample size of 20 per class is required for 85 percent classification accuracy, while 30
observations per class are required for 90 percent accuracy (Senseman, et. al. 1995). 
Notice in the table above, there are sufficient samples for a 90 percent accuracy
assessment for three of four categories.  Because the sparse/barren category only contains
20 plots, an 85 percent classification accuracy is used.  The equation below computes the
ideal number of points to sample as reference points:

N = (4 (p) (q~)) / E2

where
N = total number points to be sampled
p = expected percent accuracy
q~ = 100 - p
E = allowable error.

For this example:

N = (4 (85) (15))/ 7.52 = 90.667 = 91 samples

The example in Table 54 has 110 total plots, which is sufficient for an overall accuracy
assessment.

11.9.3.3 Percentage of Pixels Correctly Classified

This is one of the most commonly used measures of agreement and is easy to calculate. 
Simply divide the number of points correctly classified by the total number of reference
pixels.  The equation is shown below.
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The numerator represents the number of points correctly classified.  This value is
calculated by summing the diagonal entries from the error matrix.  The diagonal values,
from upper left to bottom right represent the number of points correctly identified in the
classified image as compared to the reference data, calculated plant community.  The
denominator is the total number of reference pixels.  This is the sum of the row marginals
or the total number of points.

From the error matrix above:

(30 + 27 + 30 + 20) / 110 = .972727 or 97.3 % of the points were correctly classified.

It is also possible to determine if the percent of correctly classified points exceeds a pre-
determined minimum classification accuracy.  See Senseman, et. al. (1995) for further
information.

11.9.3.4 Errors of Omission

Errors of omission refer to points in the reference map that were classified as something
other than their "known" or "accepted" category value.  In other words, points of a known
category were excluded from that category due to classification error.

Errors of omission for each category are computed by dividing the sum of the incorrectly
classified pixels in the non-diagonal entries of that category column by the total number
of pixels in that category according to the reference map (i.e., the column marginal or
column total).  The values in the non-diagonal cells represent points that were classified
differently in the reference map compared to the classified map.

Look down the column of values for dense woodland (Table 54).  Notice the value 3 in
the second row under this column.  This number represents the number of plots classified
as dense woodland, using the plant community classification, that were classified as open
woodland on the classified image.  The cells in the third and forth rows contain zero.  The
sum of incorrectly classified points is therefore 3.  The value 30 in the first row represents
the number of correctly classified points.  The error of omission for dense woodlands is
computed as:

3 / 33 = .0909 or 9.1% error of omission.

The remaining values were calculated and are shown in Table 55.

11.9.3.5 Errors of Commission

Errors of commission refer to points in the classification map that were incorrectly
classified and do not belong in the category in which they were assigned according to the
classification.  In other words, points in the classified image are included in categories in
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which they do not belong.  Errors of commission are calculated by dividing the sum of
incorrectly classified points in the non-diagonal entries of the category row by the total
number of points in that category according to the classified map (i.e., the row marginal
or row total).

Read across the row for open woodland.  Notice the 3 under the first column.  This
number represents the number of plots classified as open woodland in the classified map
that were classified as dense woodland using the plant community classification.  The
value in the second column represents the number of plots correctly classified and is not
used here.  The remaining values in the row are zero, making the sum of incorrectly
classified plots 3.  The error of commission for open woodland is computed as:

3 / 30 = .10 or 10 percent error of commission.

The remaining values were calculated and are shown in Table 55.

11.9.3.6 Kappa Coefficient of Agreement

The final measure of agreement discussed is the Kappa Coefficient of Agreement.  The
Kappa Coefficient provides a measure of how much better the classification performed in
comparison to the probability of randomly assigning points to their correct categories. 
The equation for the Kappa Coefficient of Agreement is:
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where:
r = the number of rows in the error matrix
xii = the number of observation in row i and column i
xi+ = the marginal totals of row i
x+i = the marginal totals of column i
N = the total number of observations.

From the error matrix (Table 54), the Kappa Coefficient is calculated as:
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It is also possible to calculate a measure of agreement for each class by using the
Conditional Kappa Coefficient of Agreement.  This is calculated as:
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where:
Ki = Conditional Kappa Coefficient of Agreement for the ith category
N = the total number of observations
pii = the number of correct observations for the ith category
pi+ = the ith row marginal
p+i = the ith column marginal.

The Conditional Kappa Coefficient of Agreement for open woodland is:
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Table 55.  Summary table for accuracy assessment.
Category % Commission % Omission Conditional Kappa
Dense Woodland 0 9.090909091 1
Open Woodland 10 0 0.86746988
Grassland 0 0 1
Sparse/Barren 0 0 1

Kappa Coefficient 0.96133333

Observed Correct Total Observed % Observed Correct
107 110 0.972727273

By examining the measures of agreement in Table 55, it is concluded that the
classification performed well.  97.27 percent of the plots, or 107 out of 110, were
classified correctly.  Looking at the values for each of the individual categories it can be
stated that each performed well.  The open woodland category was the only one that had
plots incorrectly identified in the classification.  Three of the open woodland plots were
actually classified as dense woodland, using the plant community classification, resulting
in a 10 percent error of commission.  This means these plots were included in the
classified category of open woodland when they do not belong there.  Notice that the
dense woodland category has a 9.09 percent error of omission.  This suggests that three
plots were classified as something other then their known or accepted category value.  In
other words, these plots were excluded from dense woodland due to a classification error.
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Looking at the Conditional Kappa for each category it is concluded that all categories,
with the exception of open woodland, were accurate.  The open woodland was fairly
accurate with a value of .8674.  The remaining categories were classified exactly correct.

11.10 Additional Analyses

11.10.1 Biodiversity Indices

11.10.1.1 Diversity as a Management Concern

Biological diversity or biodiversity can be defined as the diversity of genes, species,
communities, and ecosystems.  Biodiversity is a simple general concept that rapidly
becomes complex with attempts at measurement and comparison.  Each level of
biodiversity has three components: compositional diversity, structural diversity, and
functional diversity.  Compositional diversity is examined most often.

Considerable evidence suggests that biodiversity is being lost at a rapid rate.  Most
management approaches to minimize loss focus on species, often when an organism is
nearing extinction. This species approach, however, can be inefficient and expensive,
often focusing on symptoms rather than the underlying causes.  Habitat management and
protection is essential to species population stability and survival.  Therefore, a successful
management program should attempt to maintain an array of representative ecosystems. 
Also, both species and ecosystem-level approaches are necessary because ecosystem
classification systems are often not comprehensive enough to encompass every species. 

By examining the spatial and temporal distribution of different ecological communities,
managers can evaluate the influence of management activities on community processes,
species dispersal and migration (e.g., habitat linkages and migration corridors), or loss of
habitat and artificial habitat fragmentation.  For example, trends in herbaceous plant
diversity can be examined following the introduction, cessation, or change in grazing
regimes or burning prescriptions.  Impacts to woody vegetation can be similarly examined
following forest management activities.  Additional examples of how diversity analyses
can be applied and integrated with resource management include how neotropical migrant
birds are affected by management activities over time and how land use activities
adversely impact endangered species habitat.  Structural diversity (e.g., foliar height
diversity), a function of the number of vertical layers present and the abundance of
vegetation within them, has been strongly linked to bird species diversity in woodland
environments (MacArthur and MacArthur 1961).  Caution should be exercised when
inferring cause and effect from only several years of data.  Long-term data may be
required to reveal trends, especially in arid environments where year to year variability
can be high.
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11.10.1.2 Using Monitoring Data to Evaluate Diversity

The application of monitoring data and selection of a diversity statistic can be difficult
because the measures of species richness, evenness, and diversity are themselves diverse
and cannot be applied universally.  Different installations may prefer different measures
because of the distribution of habitats or relative abundance of species.  The choice of
statistic may also be influenced by the methods chosen by other land management
agencies in the region in order to facilitate comparison of results. 

Species diversity measures can be divided into three main categories.  Species richness
indices are a measure of the number of species in a defined sampling unit.  Secondly,
species abundance models describe the distribution of species abundance.  The third
group of indices (e.g. Shannon, Simpson) is based on the proportional abundance of
species and integrates richness and evenness into a single number. 

Table 56 summarizes the performance and characteristics of a range of diversity statistics
showing relative merits and shortcomings. The column headed “Discriminant ability”
refers to the ability to detect subtle differences between sites or samples.  The column
headed “Richness or evenness dominance” shows whether an index is biased towards
species richness, evenness, or dominance (weighted toward abundance of commonest
species).  Those marked in bold are calculated  by the Access LCTA program. 

Table 56.  Performance and characteristics of diversity statistics.  Reprinted from Magurran (1988).

Diversity Statistic
Discriminant
ability

Sensitivity
to sample
size

Richness or
evenness
dominance Calculation

Widely
used?

α (log series) Good Low Richness Simple Yes

λ (log normal) Good Moderate Richness Complex No
Q statistic Good Low Richness Complex No
S (species richness) Good High Richness Simple Yes
Margalef index Good High Richness Simple No
Shannon index (H’) Moderate Moderate Richness Intermediate Yes
Brillouin index Moderate Moderate Richness Complex No
McIntosh U index Good Moderate Richness Intermediate No
Simpson index Moderate Low Dominance Intermediate Yes
Berger-Parker index Poor Low Dominance Simple No
Shannon evenness Poor Moderate Evenness Simple No
Brillouin evenness Poor Moderate Evenness Complex No
McIntosh D index Poor Moderate Dominance Simple No

To calculate diversity statistics from LCTA plot data, plots should first be grouped by
desired criteria.  The chosen diversity statistic is then calculated for each plot, and then
averaged by group.  To optimally interpret patterns of diversity, plant life forms such as
woody and herbaceous, trees and shrubs, should be considered separately in diversity
studies (Huston 1994).  While some actual or theoretical situations may cause commonly
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used diversity statistics to give contradictory results, for most sample data from natural
communities the values for all diversity statistics are highly correlated (Huston 1994). 

Following are some of the more common diversity statistic equations.

S = total number of species recorded
N = the total number of individuals summed for all S species (combined)

Margalef's diversity index (DMg)

( )
N

SDMg ln
1−=

Berger-Parker diversity index (d)

N
Nd max=

where:
Nmax = number of individuals for the most abundant species

To ensure the index increases with increasing diversity the reciprocal form of the measure
is usually adopted (1/d).

Simpson's index (D)

� −
−=

)N(N
)n(nD ii

1
1

where:
ni = number of individuals in the ith species

To ensure the index increases with increasing diversity the reciprocal form of the measure
is usually adopted (1/D).
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Shannon diversity index (H’)

( )ii ppH ln�=′

where:
pi = proportional abundance of the ith species (ni / N)

Shannon evenness (E)

S
HE

ln
′

=

where:
H' = Shannon diversity index

The following general guidelines for diversity analyses are provided by Magurran (1988)
and Southwood (1978):

(a)  Ensure where possible that sample sizes are equal and large enough to be
representative.

(b)  Calculate the Margalef and Berger-Parker indices.  These straightforward measures
give a quick measure of the species abundance and dominance components of diversity. 
Their ease of calculation and interpretation is an important advantage.

(c)  If one study is to be directly compared with another, the same diversity index should
be used.

11.10.2 Similarity Coefficients

11.10.2.1 General Description

Similarity coefficients evaluate the relatedness of sites, communities, training areas, etc. 
Used in rangeland ecology to compare a single site to a desired condition or status, the
analysis can be applied to any two sites, or groups of sites.  There are a number of
variations for the calculation of similarity coefficients.  The USDA Forest Service (1996)
recommends the Sorensen coefficient (Shimwell 1972):
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where a is the number of the constant (e.g., Cover-Frequency Index) of the first group, b
is the number of the constant of the second group, and w is the number both have in
common (i.e., the lowest of the two values for a specific condition).  The point of
separation between similarity and the lack of similarity at 65%; that is, there is similarity
for values from 65-100% and a lack of similarity for values from 0-64%. However, 65%
is an arbitrary value and professional judgement should be used to justify an increase or
decrease of the cut-off value.  If, for example, a comparison is made between a pristine
site and a utilized site, based on the presence of the same dominant species, a cut-off of
60% may be more appropriate.  Likewise, 70% may not be considered similar because of
the species present and the species desired for the site.  An understanding of composition
and the ecology of a community type is necessary.

Another calculation for similarity is the Jaccard's Coefficient of Similarity (Shimwell
1972):

100×
−+ wba

w

While similar to Sorensen's coefficient, Jaccard's calculation tends to be a lower value,
and 50% is the general cut-off.  Other indices of similarity are based on species presence,
species dominance, and the combination of species present.  The quality of one index
describing similarity over another is hard to quantify.

11.10.2.2 Applicability

Similarity coefficients are used for comparing the degree of likeness.  In general, cover
and frequency data are used in combination as the constant for comparison; however,
other descriptors can be used. 

11.10.2.3 Advantages and Limitations

Similarity coefficients are easy to calculate; however, an understanding of the groups
being compared is necessary to determine an applicable cut-off point.  Also, there should
be greater similarity within than between the groups being compared (i.e., greater
similarity within a plant community type than between plant community types).
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11.10.2.4 Example

The following example compares the community classification of five plots in a single
training area to five plots in a "pristine" area within the Mojave desert.  Both groups of
plots are representative of the Ambrosia dumosa/Larrea tridentata  (AMDU2/LATR2)
vegetation type.  The question is --  How similar are plots in a disturbed area compared
to an undisturbed, or control, area?

1. Compile a data set to test species similarity between two locations with the same
vegetation type.  This can be two training areas with different uses.  In the example,
vegetation in a control site (treatment 1) is compared to that in a training area
(treatment 2).

2. Calculate canopy cover (%) (Table 57).  Display canopy cover by species, plot, and
treatment (Table 58).  Create a table displaying occurrence (presence or absence) of
species by plot and treatment (Table 59). The value will be 1 or 0.

3. Calculate frequency (%) (Table 60).  Frequency is the proportion or percent of plots in
which a species occurs.

4. Calculate the average canopy cover (%) by species (Table 61).

5. Calculate Cover-Frequency Index (Table 62).

6. Determine similarity (Table 62).

7. Calculate Sorensen's and Jaccard's similarity indices (Table 62).

Canopy cover data  are used in this example.  Canopy cover consists of all plant life
forms in a community and provides an indication of species dominance.  Cover-
Frequency Index values are typically the constant used in the description of similarity:

Cover-Frequency Index = Average % Canopy Cover x % Frequency
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Table 57.  Canopy cover data from 5 plots in Training Area B.
Data are used to determine the similarity of 5 plots in Training Area B to 5 plots in a control area adjacent
to the installation.  All plots are representative of the Ambrosia dumosa/Larrea tridentata vegetation type. 
The number of canopy intercepts/ point/ species and the total number of canopy intercepts/line are given. 
The percent canopy cover for each species is shown as the number of intercepts for a species (a) divided by
the total number of intercepts of all species (b) x 100.

PlotID Locatio VegID Count (a) Total Intercepts (b) % Canopy Cover
4 Control AMDU2 28 41 68.3
4 Control ERBO 5 41 12.2
4 Control LATR2 8 41 19.5

25 Control AMDU2 8 13 61.5
25 Control LATR2 5 13 38.5
27 Control AMDU2 5 47 10.6
27 Control BRTE 12 47 25.5
27 Control GRSP 4 47 8.5
27 Control LATR2 26 47 55.3
28 Control AMDU2 9 17 52.9
28 Control GRSP 1 17 5.9
28 Control LATR2 6 17 35.3
28 Control LYAN 1 17 5.9
54 Control AMDU2 9 43 20.9
54 Control CHPA12 7 43 16.3
54 Control EPNE 1 43 2.3
54 Control ERFAP 3 43 7.0
54 Control LATR2 5 43 11.6
54 Control SAME 14 43 32.6
54 Control THMO 4 43 9.3

8 TrArea B AMDU2 1 5 20.0
8 TrArea B ERIN4 1 5 20.0
8 TrArea B LATR2 3 5 60.0

18 TrArea B AMDU2 2 15 13.3
18 TrArea B EULA5 2 15 13.3
18 TrArea B GRSP 3 15 20.0
18 TrArea B LATR2 8 15 53.3

108 TrArea B AMDU2 1 3 33.3
108 TrArea B LATR2 2 3 66.7
114 TrArea B STSP3 1 1 100.0
132 TrArea B LATR2 2 3 66.7
132 TrArea B LYAN 1 3 33.3
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Table 58.  Species canopy cover (%) by plot in Ambrosia dumosa/Larrea tridentata vegetation types
in the control area and in Training Area B. 

Percent Canopy Cover
Control Area Training Area B

Species Code plot 4 plot 25 plot 27 plot 28 plot 54 plot 8 plot 18 plot 108 plot 114 plot 132
AMDU2 68.3 61.5 10.6 52.9 20.9 20.0 13.3 33.3
BRTE 25.5
CHPA12 16.3
EPNE 2.3
ERBO 12.2
ERFAP 7.0
ERIN4 20.0
EULA5 13.3
GRSP 8.5 5.9 20.0
LATR2 19.5 38.5 55.3 35.3 11.6 60.0 53.3 66.7 66.7
LYAN 5.9 33.3
SAME 32.6
STSP3 100.0
THMO 9.3

Table 59.  Presence of  species on plots in the Ambrosia dumosa/Larrea tridentata vegetation types
in a control area and in Training Area B.

Occurrence
Control Plot #s Training Area B Plot #s

Species Code 4 25 27 28 54 8 18 108 114 132
AMDU2 1 1 1 1 1 1 1 1
BRTE 1
CHPA12 1
EPNE 1
ERBO 1
ERFAP 1
ERIN4 1
EULA5 1
GRSP 1 1 1
LATR2 1 1 1 1 1 1 1 1 1
LYAN 1 1
SAME 1
STSP3 1
THMO 1
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Table 60.  Species frequency (%) in Ambrosia dumosa/Larrea tridentata vegetation types in a control
area and in Training Area B.  Percent frequency is the number of plots where the species occurred
divided by the number of plots surveyed X 100.

Percent Frequency
Species Code Control Training Area
AMDU2 100 60
BRTE 20 0
CHPA12 20 0
EPNE 20 0
ERBO 20 0
ERFAP 20 0
ERIN4 0 20
EULA5 0 20
GRSP 40 20
LATR2 100 80
LYAN 20 20
SAME 20 0
STSP3 0 20
THMO 20 0

Table 61.   Average percent cover of species in Ambrosia dumosa/Larrea tridentata vegetation types
in a control area and in Training Area B.

Average Canopy Cover (%)
Species Code Control Training Area
AMDU2 42.9 22.2
BRTE 25.5 0.0
CHPA12 16.3 0.0
EPNE 2.3 0.0
ERBO 12.2 0.0
ERFAP 7.0 0.0
ERIN4 0.0 20.0
EULA5 0.0 13.3
GRSP 7.2 20.0
LATR2 32.0 61.7
LYAN 5.9 33.3
SAME 32.6 0.0
STSP3 0.0 100.0
THMO 9.3 0.0
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Table 62.  Cover-Frequency Index (CFI) and similarity between the control area and Training Area B
in Ambrosia dumosa/Larrea tridentata vegetation types. 
Sorensen's and Jaccard's similarity indices are shown.  Cover-frequency index values are
canopy cover (Table x-2) X frequency (Table x-4). Similarity is the amount of
commonness of the CFI values by species (the lowest of the two values).

CFI Similarity
Control Training Area B

Species Code a b w
AMDU2 4286.8 1333.3 1333.3
BRTE 510.6 0.0 0.0
CHPA12 325.6 0.0 0.0
EPNE 46.5 0.0 0.0
ERBO 243.9 0.0 0.0
ERFAP 139.5 0.0 0.0
ERIN4 0.0 400.0 0.0
EULA5 0.0 266.7 0.0
GRSP 287.9 400.0 0.0
LATR2 3204.3 4933.3 0.0
LYAN 117.6 666.7 0.0
SAME 651.2 0.0 0.0
STSP3 0.0 2000.0 0.0
THMO 186.0 0.0 0.0

Sum 10000.0 10000.0 1333.3

Sorensen (2w/a+b)*100 13.3
Jaccard (w/a+b-w)*100 7.1

Results.  Each equation gives a different value. Whether there is dissimilarity or similarity
depends on the cut-off level. Sorensen uses 65% and Jaccard uses 50%.  Both tests
indicate dissimilarity between the two vegetation types.  That is, given the control area
and Training Area B were similar prior to military and other possible uses, they have
changed with use.

11.10.3 Importance Values

11.10.3.1 General Description

Importance values are the summation of a number of measures describing characteristics
of a species on a plot, in a training area, in a community, or on an installation.  A single
measure (e.g., cover, frequency, or density) may inadequately describe the role of a
species.  An importance value is a comprehensive index, generally consisting of 1)
relative frequency (the frequency of a species as a percent of the total frequency value of
all species within the sampling unit), plus 2) relative density (the density of a species as a
percent of the total density of all species), plus 3) relative dominance, or cover, of a
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species (the cover of a species as a percent of the total area measured).  Other measures
can be included in determining a importance values, such as production or volume. 

11.10.3.2 Applicability

Importance values  can be used as the sum or as the average of two or more descriptive
characteristics of  species to describe the significance of a species to other species
present.

11.10.3.3 Advantages and limitations

Care must be exercised when choosing the attributes used to calculate importance values.
 Importance values can end-up being arbitrary and not truly descriptive of a species role. 
Combined measures should be used critically (Greig-Smith 1983).

11.10.3.4 Example

The following example compares woody plant data collected on 210 transects.  Data for
the two dominant species, Ambrosia dumosa and Larrea tridentata are shown and
compared.  Both species are components of community types in the Sonoran desert. 
Ambrosia is noted for its density (Figure 145A) and Larrea for its visual dominance
(Figure 145B).
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Figure 145.  A. The distribution of Ambrosia dumosa and Larrea tridentata in the Sonoran desert.  B.
 The distribution of Ambrosia dumosa and Larrea tridentata volume.

To calculate the importance values for these two species:

1) Calculate species density: Density = number of individuals/sample area

2) Calculate relative density

Relative Density = (the density for a species / total density of all species) X 100

3) Calculate species frequency

Frequency = number of plots where a species occurs / number of plots sampled
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4) Calculate the relative frequency

Relative Frequency = frequency of a species /total frequency of all species X 100

5) Calculate species dominance, or volume5

Dominance = volume of a species / area sampled

6) Calculate the relative dominance

Relative Dominance = (dominance of a species / total dominance of all species) x 100

7) Calculate the importance value (IV)

Relative Density + Relative Frequency + Relative Dominance / number of
components

In the example shown below, the number of components is three.

Relative
Density

Relative
Frequency

Relative
Dominance

Importance
Value (IV)

AMDU 49.1 15.6 5.0 23.2
LATR2 33.1 11.2 43.2 29.2

Results -- Ambrosia is more abundant (Relative Density), occurs on more plots (Relative
Frequency), but is much smaller (Relative Dominance) than Larrea.  Because of number
and the greater occurrence of Ambrosia, even with its smaller size, Ambrosia is only
slightly less important than Larrea.

11.11 Software for Statistical Analysis

There are a number of software packages available for statistical analysis on personal
computers (PCs).  They are typically divided into three basic categories:  a) spreadsheets
and add-ins for commercial spreadsheets; pseudo-spreadsheet and menu-driven packages;
and c) command line, programmable packages.  This section provides a summary of the
packages that are currently available.  Versions, features, and prices change rapidly; this
discussion does not represent an endorsement of any particular product.

                                                
5 In this example, plants are considered to be spheres. Therefore, volume was calculated as height

X Πr2; where r = 0.5 x height.  (See Bonham 1989 for a detailed discussion on plant shapes and
volumes).
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The relative advantages and disadvantages of these three approaches are listed in Table
63.

Table 63. Relative advantages and disadvantages of statistical software types.
Type of
package Advantages Disadvantages

Spreadsheet 1.  Easy to use. 1. Limited Capabilities

 2.  Short learning curve for implementing simple functions. 2.  Difficult and tedious to implement for complex
data models.

3.  Programming capabilities. 3.  May be tedious to repeat complex analysis on
several datasets.

  4.  Will not do most types of multivariate analysis.
Spreadsheet
Add-in 1.  Fairly easy to use. 1.  Somewhat limited capabilities.

 2.  Short learning curve for implementing simple functions. 2.  Additional expense on top of spreadsheets.
 3.  Programming capabilities. 3.  Will not do most types of multivariate analysis.

 4.  Fairly easy to repeat complex analysis on several
datasets.  

Pseudo-
spreadsheets 1.  Fairly easy to use. 1.  Moderate learning curve.

 2.  Some programming capabilities 2.  Requires a more thorough understanding of
statistical techniques and theory.

 3.  Fairly easy to repeat complex analysis on several
datasets.  

 4.  Will perform many types of multivariate analysis.  
Command line 1.  Very Powerful. 1.  Substantial learning curve involved

 2.  Good documentation of statistical techniques. 2.  Requires a more thorough understanding of
statistical techniques and theory.

 3.  Will perform virtually all types of multivariate analysis. 3.  Can be expensive, but it depends on the
package you choose.

 4.  Programmable with a flexible, very powerful
programming language.  

11.11.1 Spreadsheets and Add-ins

Commercial spreadsheets like Excel, Quatro Pro, and Lotus 1-2-3 have a number of
statistical capabilities built into them.  Refer to Table 64 and Table 65 for a summary of
built-in capabilities.
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Table 64. Statistical tests/functions for spreadsheet add-ins and spreadsheet software packages.
Spreadsheet add-ins Spreadsheets

statistical tests/functions WinStat Analyse-It XLStat Excel Quattro Pro Lotus 1-2-3
Descriptive statistics x x x x x x
t-test x x x x x x
Correlations x x x x x x
Regressions x x x x x x
Analysis of variance x x x x x x
Bootstrapping
Canonical corellations
Cluster analysis x x
Correspondence analysis x
Discriminant analysis x x
Factor analysis x x
Multiple comparisons x x
Nonparametric tests x x
Principal component analysis x
Programmable* 3 3 3 3 3 3

Current version due Spring, 1999 not listed 3.5 97 8.0 9.0

* The numbers 1-3 in the programmable row of Table 64 indicate three levels of
programmability.  A “1” indicates that the package uses its own command line-type
program language and that highly complex and interactive programs can be written to run
the package.  Learning and understanding the programming language is usually necessary
in order to use the package effectively.  A “2” means that the package allows one to set up
“scenarios” that can then be applied to other datasets of similar or identical structure. 
This is particularly useful if one wants to perform the same tests on a series of different
datasets.  A “3” indicates that the package also has its own program language available,
however the programming environment is quite different from that defined by the number
1.  Rather than being command line driven, code is associated with cells within the
spreadsheet or is tied to buttons or forms that one inserts onto the spreadsheet.  An
example is Visual Basic for Applications, which is used with Excel 97.
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Table 65.  Statistical tests/functions for command line and pseudo-spreadsheet statistical software
packages.

Command line packages Pseudo-spreadsheets
statistical tests/functions SPSS BMDP SAS S-Plus Systat SigmaStat Statview Minitab

Descriptive statistics x x x x x x x x
t-test x x x x x x x x
Correlations x x x x x x x x
Regressions x x x x x x x x
Analysis of variance x x x x x x x x
Bootstrapping x x x x x
Canonical correlations x x x x
Cluster analysis x x x x x x
Correspondence analysis x x x x x x
Discriminant analysis x x x x x x
Factor analysis x x x x x x
Multiple comparisons x x x x x x
Nonparametric tests x x x x x x x
Principal component analysis x x x x x x
Programmable 1 1 1 1 2 2 2 2

Current version 8.0 7.0 6.12 4.5 8.0 2.0 5 12.21

Add-in packages are tool sets that are added to spreadsheets to expand their capability. 
For example, Excel 97 has an “add-in manager “ that allows a user to change from one
add-in tool set to another.  In the case of these add-ins, new features and functions are
added to the functions already within the package.  The add-ins are available only after
the spreadsheet is opened.  Running the statistics does not require you to open a separate
piece of software.  However, several steps must be performed within the spreadsheet in
order to load the new functions.

11.11.2 Command-Line and Pseudo-Spreadsheets

The term “command line” refers more to the origin of the programs than to how they are
currently executed.  All four of these packages began as software programs installed on
mainframe computers running UNIX or some other operating system.  They have evolved
to their present state and still can be run in a “command line” environment.  This means
that a user can execute commands from a command prompt, one line at a time.  However,
most of these packages also have various levels of interactivity built into them.  For
example, the SAS language allows one to insert commands and functions directly from a
series of help tools.  BMDP now comes with a highly integrated graphical user interface
that marks it as more of a hybrid statistics tool, integrating the command line
environment with a graphical user interface.
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The term “pseudo-spreadsheets” refers to how the user organizes and views data; it does
not refer to how data are entered or edited.  These packages allow a user to input or
import data in rows and columns and view data in a manner very similar to a spreadsheet.
 However, the similarity stops here.  Most do not allow the user to manipulate the data
with the same ease as spreadsheets.  The data are not technically stored in “cells” as they
are in spreadsheets, so one cannot generally reference data in a specific cell.

11.11.3 Graphics Capabilities

All of the aforementioned packages provide the ability to prepare graphs of your data and
results.  Some are highly interactive (e.g. Excel, Quattro, Lotus) whereas others are
extremely powerful but not very user-friendly (e.g. SAS).  Those in the middle can
prepare graphs to meet most needs.  SigmaStat appears to produce very high-quality
graphics.  It is an interactive tool that integrates well with Excel spreadsheet data.  It
requires that SigmaPlot (SPSS) software, a scientific graphics tool, be running
concurrently.

11.11.4 Selecting a Package

Trying to choose a database package can be challenging.  Just like in buying a car or
anything else for that matter, it all depends on what you want to do with it.   Most (all?)
of the companies offer free trial versions of the software so you can “try before you buy”.
 It would be an excellent idea to do this if you have the time.  Cost for these packages
varies depending on the buying programs that are in place at your place of work.  Check
with your purchasing group first to see if they have pre-negotiated discounts for any of
the packages.

Users interested in programming and complex statistics should consider any of the four
“command line” systems.  Users are most likely to achieve success with complex
software packages if they have access to good customer support or other experienced
users where they work.  A local user-group may be helpful for support.  In the absence of
any local users, you may want to base your choice on the quality of technical support and
documentation provided by the company. 

For less-advanced users, any of the “pseudo spreadsheet” packages should prove
adequate.  When a number of packages have similar features, the preferred software is
often that which the user is familiar with.  If principal needs consist of descriptive
statistics, t tests, Analysis of Variance, or similar functions, any popular spreadsheet or
basic statistical package should suffice. 
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11.11.5 Sample Size and Power Analysis Software

Sample size adequacy and power analysis are important when planning or evaluating a
study.  Sample sizes, statistical power, and minimum detectable change sizes can be
calculated using tables, charts, calculators, and spreadsheets (see Chapter 3 for
equations).  However, computer software can in some cases improve accuracy and ease of
calculation.  Sample size calculators and power analysis has been incorporated into
several statistical software packages, but is generally treated as a separate module for an
additional cost. 

Thomas and Krebs (1997) provide a critical review of statistical power analysis software.
 All software reviewed is constantly in development; features, cost, support, and ease of
use therefore are also constantly changing.  For beginner to intermediate level use, they
recommend one of the commercial general purpose power packages: NQUERY
ADVISOR (mailto:info@statsolUSA.com), PASS, or STAT POWER
(mailto:QEISys@aol.com).  Additional commercial packages with potential include
POWER AND PRECISION (http://www.PowerAndPrecision.com) and EX-SAMPLE
(http://www.ideaworks.com).  A number of freeware and shareware programs were also
reviewed.  Among these programs, those that had the highest ratings include GPOWER
(http://www.psychologie.uni-trier.de:8000/ projects/gpower.html), POWER PLANT
(mailto:biometrics@ccmar.csiro.au), STPLAN (ftp://odin.mdacc.tmc.edu/
pub/msdos/stplan41.exe - survival analysis and medical statistics), MONITOR
(ftp://ftp.im.nbs.gov/pub/software/monitor - population trend analysis), and TRENDS
(ftp://ftp.im.nbs.gov/pub/software/CSE/wsb21515/trends.zip - population trend analysis).
 The authors concluded that most general purpose statistical programs reviewed were
inadequate in one or more respects.  Elzinga et al. (1998) reviewed a number software
programs following the review by Thomas and Krebs.  They recommend the programs
STPLAN (freeware) and PC SIZE: CONSULTANT (ftp://ftp.simtel.net/pub/simtelnet/
msdos/statstcs/size102.zip - shareware).  They do not recommend GPOWER for
vegetation monitoring applications due to limited software documentation and a high
level of assumed knowledge.

The review by Thomas and Krebs (1997) is available at http://sustain.forestry.ubc.ca/
cacb/power/review/review.html.   The USGS maintains a World Wide Web page with
power analysis information and links to software and on-line calculators at:
http://www.mp1-pwrc.usgs.gov/powcase/powlinks.html.  A comprehensive list of
microcomputer software for calculating power analysis is maintained by L. Thomas at:
http://sustain.forestry.ubc.ca/cacb/power/. 

ftp://odin.mdacc.tmc.edu/pub/msdos/stplan41.exe
ftp://odin.mdacc.tmc.edu/pub/msdos/stplan41.exe
ftp://ftp.im.nbs.gov/pub/software/monitor
ftp://ftp.im.nbs.gov/pub/software/CSE/wsb21515/trends.zip
ftp://ftp.simtel.net/pub/simtelnet/msdos/statstcs/size102.zip
ftp://ftp.simtel.net/pub/simtelnet/msdos/statstcs/size102.zip
http://sustain.forestry.ubc.ca/cacb/power/review/review.html
http://sustain.forestry.ubc.ca/cacb/power/review/review.html
http://www.mp1-pwrc.usgs.gov/powcase/powlinks.html
http://sustain.forestry.ubc.ca/cacb/power/
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11.12 Spreadsheet Tools and Functions in Microsoft Excel

The following section provides some basic instruction on programming equations and
functions in Excel.  Examples of elementary statistical analyses are contained in a
spreadsheet file named "Statistical Analysis and Data Manipulation Examples.xls", which
is available on the Center for Ecological Management of Military Lands (CEMML) web
site (www.cemml.colostate.edu/trm/index.htm).

11.12.1 Using Functions in Excel

There are a wide number of functions available in Excel for performing data analysis.
This section provides a short tutorial on how use functions and write equations in Excel
worksheets.  Much of the following information is taken from the Microsoft Office 97
Professional Excel Help function, which can be accessed by clicking on the <Help> menu
and then the <Contents and Index> option on the Excel97 menu.  Under the <Index>
tab, try typing in the keyword <functions>, and browse some of the sections that come
into view. 

Statistical worksheet functions perform statistical analysis on sets of data. For example, a
function can provide statistical information about a straight line plotted through a group
of values, such as the slope of the line and the y-intercept, or about the actual points that
make up the straight line. Table 66 summarizes some of the basic statistical functions
available.

The following section provides some basic instruction on programming equations and
functions in Excel.  Examples of elementary statistical analyses arecontained in a
spreadsheet file named "Statistical Analysis and Data Manipulation Examples.xls", which
is available on the CEMML web site (www.cemml.colostate.edu/trm/index.htm).

Table 66. Some of the statistical functions available in Excel.
Sum The sum of the values. This is the default function for numeric source data.
Count The number of items. The Count summary function works the same as the COUNTA worksheet

function. Count is the default function for source data other than numbers.
Average The average of the values.
Max The largest value.
Min The smallest value.
Product The product of the values.
Count Nums The number of rows that contain numeric data. The Count Nums summary function works the same

as the COUNT worksheet function.
StdDev An estimate of the standard deviation of a population, where the sample is all of the data to be

summarized.
StdDevp The standard deviation of a population, where the population is all of the data to be summarized.
Var An estimate of the variance of a population, where the sample is all of the data to be summarized.
Varp The variance of a population, where the population is all of the data to be summarized.

http://www.cemml.colostate.edu/trm/index.htm)
http://www.cemml.colostate.edu/trm/index.htm)
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11.12.1.1 Using Functions to Calculate Values

Functions are predefined formulas that perform calculations by using specific values,
called arguments, in a particular order, called the syntax. For example, the SUM function
adds values or ranges of cells, and the PMT function calculates the loan payments based
on an interest rate, the length of the loan, and the principal amount of the loan.
Arguments can be numbers, text, logical values such as TRUE or FALSE, arrays, error
values such as #N/A, or cell references. The argument you designate must produce a valid
value for that argument. Arguments can also be constants, formulas, or other functions.
The syntax of a function (Figure 146) begins with the function name, followed by an
opening parenthesis, the arguments for the function separated by commas, and a closing
parenthesis. If the function starts a formula, type an equal sign (=) before the function
name. As you create a formula that contains a function, the Formula Palette will assist
you.

Figure 146. Syntax of a typical Excel function.

11.12.1.2 How Formulae Calculate Values

A formula is an equation that analyzes data on a worksheet. Formulas perform operations
such as addition, multiplication, and comparison on worksheet values; they can also
combine values. Formulas can refer to other cells on the same worksheet, cells on other
sheets in the same workbook, or cells on sheets in other workbooks.  Figure 147 shows a
formula which adds the value of cell B4 and “25” and then divides the result by the sum
of cells D5, E5, and F5.

Figure 147. Sample formula used in Excel.

Formulas calculate values in a specific order that is known as the syntax. The syntax of
the formula describes the process of the calculation. A formula in Microsoft Excel begins
with an equal sign (=), followed by what the formula calculates. For example, the
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following formula subtracts 1 from 5. The result of the formula is then displayed in the
cell:

= (5-1)

11.12.1.3 Examples of Functions

To demonstrate their most useful features, we are using an example from a military base
in the Southeastern U.S.  The data file contains precipitation data from a local
meteorological station. Table 67 shows a subset of the data to give the reader an example
of what the data look like.

In the first example we will convert the precipitation level from inches to millimeters. 
There are 25.4 millimeters per inch.  The first cell containing precipitation data is C2, and
the total precipitation in millimeters needs to be written to cell D2.  In cell D2, the
following equation should be written:

=(C2)*25.4

Table 67 . Subset of precipitation data used in example.
YEAR WEEK PRECIP (in.)

65 1 0.20
65 2 0.40
65 3 1.10
65 4 0.45
65 5 1.49
… … …

The equation from cell D2 can be copied and pasted to all of the other cells for which the
conversion should be made.  The copy operation will automatically update the cell
address for each cell, so that for cell D3, the equation is changed to

=(C3)*25.4

and so on for the 1655 lines of data in the worksheet (Table 68).

Table 68. Resulting spreadsheet showing the conversion from inches to millimeters.

YEAR WEEK PRECIP (in.) PRECIP (mm)
65 1 0.20 5.08
65 2 0.40 10.16
65 3 1.10 27.94
65 4 0.45 11.43
… … … …
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The next example uses the SUM function to add up all of the data for a single year using
the sum function.  We are interested in seeing the total precipitation over a two-year
period- the 1982 El-Nino year and the following year.  The sum function calculates the
totals for a range of cells specified in the function.  In this case, the cell range to be
totaled for 1982 runs from D890 to D941.  The equation looks like this:

=sum(D890:D941)

The keyboard can be used to build cell ranges.  The following keystrokes are used:

1.  In the target cell for the equation (E941), type in the following characters:    =sum(
The left parenthesis is the code that Excel interprets as the beginning of the function’s
arguments.

2.  Press the left arrow key once, moving the cursor to cell D941.  You will notice that the
cell is now surrounded by an animated, rotating dotted line.

3.  Press and hold the shift key, and using the up arrow key, move the cursor to the top of
the range of cells that you wish to add.  The animated, dotted line will move to outline the
entire range.  You can also do this by putting the mouse cursor on the beginning of the
cell range, pressing the left mouse button, and dragging the cursor to the other end of the
range, letting up on the left mouse button when you reach the end of the range.

4.  Press the right parenthesis key to close the function, and press the enter key.  The
function has now been programmed.

Repeating these steps for the 1983 data,  we find that  the year following the El Nino
summer brought 1398.78 mm of precipitation, compared with 827.02 mm for the El Nino
year.  As a shortcut, you may simply copy the contents of cell E941 to cell E993, and
Excel will automatically update the cell addresses to reflect the change in cell location.

11.12.2 Pivot Tables

Pivot tables, sometimes called cross-tabulation tables/queries, are very useful for
manipulating tabular data within spreadsheets.  They are particularly good at
summarizing large volumes of data into easily interpretable data matrices.

This example uses the precipitation data from the previous section on functions and
formulas.  Let’s propose that you would like to know what periods of year are most likely
to be dry, so that tracked-vehicle maneuvers can be concentrated in those time periods in
order to reduce potential erosion.
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Two possible ways to answer this question are to calculate the average precipitation for
each week of the year, or to calculate the probability that significant amounts of rain will
fall for each week of the year.

11.12.2.1 Example: Summarizing Long-term Climatic Data

The raw data provided by the National Weather Service are shown in Table 69.

Table 69. Tabular precipitation data for the pivot table example.  The data were provided for the
periods 1965 to 1997.

YEAR WEEK PRECIP
(in.)

PRECIP
(mm)

65 1 0.20 5.08
65 2 0.40 10.16
65 3 1.10 27.94
65 4 0.45 11.43
65 5 1.49 37.85
65 6 0.96 24.38
65 7 3.09 78.49
65 8 0.35 8.89
65 9 1.19 30.23
65 10 2.13 54.10
65 13 0.12 3.05
… … … …

The challenge immediately presented is: how to sum the data by week over the 32 year
period?  One approach is to go through and copy the data year-by-year into a large matrix,
with the rows defined by the year and the columns defined by the weeks, and then
program a cell to compute the average precipitation for each week.  This is
straightforward but takes a lot of time and is prone to manual errors.  The more direct and
efficient way to do it is through a pivot table.

Excel offers a wizard that automatically builds a pivot table based on input criteria. 
Following are some examples how to build a pivot table from the precipitation data.

Step 1.  Open the workbook which contains the raw data.  Click on the cell in the spreadsheet
where you wish to place the pivot table.  On the Data menu, click PivotTable Report.  The dialog
box in Figure 148 will appear. Select the Microsoft Excel list or database as your data source. 
Click on the Next button.
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Figure 148.  The first dialog box that appears when preparing a pivot table using the pivot table
wizard.

Step 2.  Using the mouse, click on the upper left corner of the range of cells you wish to use as the
input source.  Then, while holding down the left button on the mouse, drag the mouse cursor to the
bottom right corner of the cell range you wish to use. In this case the cells are A3 through D1647.  If
you have column titles (as in this example) then you will want to make sure the column titles are in
the very first row of raw data that you define for the pivot table.  The dialog box will then look as in
Figure 149.  The input range is surrounded by a dashed-line box.  Click on the Next button.

Step 3.  Define the columns, rows, and cell contents for the pivot table.  In this case we are trying to
create a table with the columns defined as the weeks of the year and the precipitation data being the
actual contents of the cell.  You do this by dragging the week button into the section of the wizard
labeled COLUMN, and by dragging the Precip(mm) button onto the section labeled DATA.  Note
that the dialog box in the DATA section will end up reading sum of Precip(mm).  To change this to
calculate the mean, double-click on the DATA section and change the Summarize By… section to
read average rather than sum (Figure 150).
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Figure 149. Step 2 in the pivot table wizard.

Figure 150.  Step 3 in the pivot table wizard.

Step 4.  At this point you will see the dialog box shown in Figure 151.  Click on the cell in
the spreadsheet where you wish the pivot table to be created, and then click on the Finish
button.  Excel will then paste the pivot table in place and calculate the averages for you.
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Figure 151. Final step in producing a pivot table from the pivot table wizard.

The results of the analysis (precipitation in mm for each week of the year) are shown in
Figure 152.  One can see that a week-by-week compilation of the data, with all of the
associated cutting, pasting, and copying, would be a pretty large undertaking.  Pivot tables
can cut the time required by an order of magnitude or more, and have numerous
applications beyond the example provided.
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Figure 152. Results of the pivot table analysis, shown as mean weekly precipitation in mm for each
week of the year.
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11.12.3 Importing and Exporting Dbase and ASCII Text Files

When working with large volumes of data, one frequently is required to import
information from other users or agencies, or export data for another party in your office to
use in a different application, examples being ARC/INFO or Microsoft Access.  The two
most common denominators for exports and imports are dbase (.dbf) and ASCII (.txt)
files.  Most software used for data management and analysis (including Quest, SQLBase,
Access, Paradox, SAS, SYSTAT, Statview, and others) will import and export data in
these two formats.  Many software applications will also import data from Excel files, but
will not support files from the most recent versions of Excel.  This section will provide a
brief explanation on the steps required to export in dbase and ASCII formats.

11.12.3.1 Exporting and Importing Dbase Files

Dbase files have a number of limitations that should be taken into account during import
and export operations. Field (column) names must be limited to 10 characters.  Any
portion of the column name after character 10 will be truncated. In Addition to this,
portions of cells beyond the right margin of the cell will be automatically truncated by
Excel during the export process.  For example, a six character vegetation code like
“PSMEME” within a column only four characters wide will be exported as PSME.  For
this reason we strongly recommend that all columns be expanded to their maximum
width prior to exporting to dbase format.

There are other issues related to importing dbase files.  Excel limits the maximum cell
size of imported files to 255 characters, whereas dbase memo columns can contain over
65,000 characters.  Excel will truncate all information after 255 characters. It is also
important to note that dbase memo field information is stored separately in an associated
“.dbt” file with the same name prefix as the “.dbf” file.

To import an Excel worksheet in dbase format, follow these steps:

1. Select the <File> menu and then the <open> function.  On the <Open> dialog box
that appears (Figure 153), specify <dbase Files (*.dbf)> under <Files of Type> in the
lower left corner of the box, and then specify the name of the file you wish to import.
 Click on the <open> button, and the file will appear.

2. Make whatever changes or manipulations you need to the worksheet.  When you are
finished and are ready to save your work, click on the <File> menu and select the
<Save as> function.  The <Save as> dialog box then appears on the screen.  You
must specify  in the <Save as type> field of the <Save As> dialog box that you wish
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to save your work as a spreadsheet, rather than as a .dbf file (Figure 154).  Then click
on the <Save> button to save the file.

To Export an Excel worksheet in dbase format, one follows the steps similar to #2 above.
 One may save the entire contents of a worksheet or just a specific portion of the
worksheet.  To save the entire contents of the worksheet as a dbase file, make sure that
one of the cells with actual data in it are selected by the cursor.  If the cursor is on a cell is
outside the range of cells that actually contain data, then Excel will register an error and
not be able to export the actual data.  To export just a portion of the worksheet, highlight
the cells that you wish to export and then to through the steps that follow.

Specify <dbase IV> in the <Save as type> field of the <Save As> dialog box.  Specify the
name of the file that you wish to export (e.g. PLOTMAST.DBF), and then click on the
<Save> button to export the file. The dialog box in Figure 155 will then appear.  This
simply indicates that the program will only export the data from the single worksheet on
the screen.  Data from other worksheets in the same Excel file will not be exported in this
operation.  Remember to make sure that all of your column widths are set to be at least as
wide as the widest record in that column.

Figure 153. Dialog box used to import (<Open>) dbase file types into an Excel Worksheet.
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Figure 154. Dialog box used to export (<Save as>) imported dbase data into an Excel worksheet file.

Figure 155. Dialog box that appears when saving in dbase and ASCII text file formats.

11.12.3.2 Exporting and Importing ASCII (text) Files

Sharing ASCII (text) files is another method to share information across different
software programs.  Text files are typically delimited by commas or tabs, and text data are
differentiated from numerical data by surrounding text fields with double quotation
marks.  Whereas differentiating between data types using quotation marks is not
necessary when importing into an Excel worksheet, it can be useful in some types of
analysis and is generally recommended.

The steps for importing and exporting ASCII text files are nearly identical to those for
dbase files.  The only differences are:

♦ Specify the <Text> file type in the <Files of type> field in the <Open> dialog box
when importing.
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♦ Specify the <Text> file type in the <Save as type> field in the <Save as> dialog box
when exporting.

11.12.4 Basic Statistical Tools in Excel

Excel has a large number of statistical functions available to it for various statistical
analysis.  This section reviews a number of the techniques available and provides
examples.

It is very important that users understand the statistical tests that they are implementing
within Excel.  The creators of Excel have provided a number of powerful, easy-to-use
statistical functions within the application.  Unfortunately, it is easy to unintentionally
misuse the tools, leading to inappropriate interpretations of the data analysis and incorrect
management decisions based on those interpretations.  We encourage the reader to refer
to sections 3.1 and the remainder of section 11 for more information on statistical
comparisons, and to consult with a professional statistician and/or a statistics textbook for
more details on techniques if you are not familiar with them.

11.12.4.1 Descriptive Statistics

It is often desirable to describe a dataset in terms of means, standard deviations, and other
statistical measures.  One can request a set of statistics from Excel that describe the
dataset in terms of means, variance, median, standard deviation, etc.  To do so, select the
<Tools> menu and then the <Data Analysis> option.   Select <Descriptive Statistics>
from the dialog box that appears and select <OK>, and the dialog box in Figure 156 will
appear.
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Figure 156. Dialog box for descriptive statistics in Excel.

In this case we specified the data from week 1 (cells B3-B9) for the analysis, and asked
Excel to write the output to cell G12 under the output options.  We also asked for
summary statistics, in the bottom left corner of the dialog box.  After clicking on the
<OK> button on the dialog box, the output labeled <Column1> appeared.

11.12.4.2 T-Test

This is perhaps one of the most simple and basic statistical tests for making comparisons.
 As an example, let us use a portion of the dataset from the pivot table example.  We will
compare the average winter precipitation from the first week of the year with the average
precipitation from week 26 in mid summer, from the years 1990-1996.

Just as in defining the descriptive statistics, select <Data Analysis> from the <Tools>
menu, and then select <t-test: Paired Two Sample for Means> from the dialog box.  The
dialog box shown in Figure 157will appear. In this case we defined the two datasets being
compared as that for weeks 1 and 26.  We specified the data range of B2-B9, which
includes the column labels, and checked the “labels” box in the center left portion of the
dialog box to indicate that the first column in the data contains the column header/label. 
Next we specified an alpha level of .05, which is standard for most cases of physical and
biological data comparisons.  Finally, we specified the output range would be cell A11 in
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the bottom left corner of the dialog box, and then clicked on the “OK” button.  The
results of the analysis show that for a single-tailed comparison (appropriate in this case),
the probability that the two are different is .054, or just over the .05 alpha level specified.
 Hence, the two samples are not statistically different in this comparison.

Figure 157. Results of the paired t-test analysis of the precipitation data.

The procedures for conducting a non-paired two sample t-test are nearly identical.  The
principal difference is in the two sample sets.  Whereas one would have sample groups of
equal sizes for the paired test, one can compare unpaired sample groups of different sizes
in the non-paired two sample t-test.  To conduct this test, select <Data Analysis> from
the <Tools> menu, and then select <t-test: Two-Sample Assuming Equal Variances> or
<t-test: Two-Sample Assuming Unequal Variances> depending on which assumptions
are applicable for your test.

11.12.4.3 One-way Analysis of Variance (ANOVA)

While t-tests are valuable for simple comparisons of two groups of data, they are prone to
experiment-wise errors when applied to repeated measures.  Analysis of variance
(ANOVA) is a very powerful and appropriate tool when conducting comparisons of
multiple sets of data.

Again using the precipitation data, let us test to see if there are actually any weeks of the
year where precipitation is statistically greater than or less than other weeks.



654

Figure 158 shows the dialog box and results from the ANOVA.  The steps are relatively
straightforward.  As in the paired t-test, the comparison groups are organized by columns.
 We specified the 52 columns corresponding to each week of the year, and then indicated
that the first row of data contains column header/label information.  We specified an
alpha level of .05, and asked for the data to be exported to cell A11.  After clicking on the
“OK” button, the results were printed to the worksheet.

The results indicate that the probability is approximately 0.74 that the differences among
the periods examined are due to chance alone.  Two possible conclusions are: (1) mean
weekly precipitation levels throughout the year since 1990 have been relatively even from
week to week, or (2) the sample size of seven years (1990-1996) is too small and/or
variable to detect any differences that do exist.

Figure 158. Example of a Single Factor Analysis of Variance (ANOVA) on the precipitation data.

11.12.4.4 Correlations

One other practical tool for statistical analysis is correlation analysis.  Excel will calculate
the correlation between rows or columns of data, and report the results in a correlation
matrix.  For this section we will use a different example dataset, as follows:
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Table 70. Example dataset for the correlation analysis.
One’s 1 1 1 1 1
Two’s 2 2 2 2 2
Ascending 1 2 3 4 5
Descending 5 4 3 2 1
Random 0.509693235 0.677558127 0.235359559 0.147237963 0.904992965

The correlation analysis is set up in a nearly identical fashion as was done for the
previous examples.  Select “Correlation” from the list of Data Analysis tools accessed
from the “Tools” menu.  In this case the data are organized by rows, so we specified the
“Grouped by rows” check box.  Note that the 5th row contains a series of random numbers
generated in Excel using the Random() function.  We identified that the first column
contains header/label information, and then specified cell A8 for the results,  Clicking on
“OK” yielded the results in Figure 159.

Figure 159. Example of a Correlation analysis in Excel.

The results of the analysis suggest that the ones and twos are highly correlated
(correlation = 1), that the Ascending and Descending columns are highly anti-correlated
(correlation = -1), and that the correlations between the other pairs are relatively
uncorrelated.
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11.13 Guidelines for Reporting Monitoring Results

11.13.1 Purpose and Types of Reports

The purpose of a report is to present information and facts, examine relationships, and
present conclusions based on the information analyzed.  A report provides readers with
background information and an understanding of the state of the natural resources on an
installation.  In some cases, this could be the first comprehensive document describing or
summarizing an installation's natural resources. Some specific installation questions
cannot be directly address by the data set or other available resources.  However, working
with the data will help recognize additional data needs.  Conclusions made should
deduced from the results and data presented in the report.

The types of reports that precede the one to be written may define the level of detail.  An
initial report may contain much more detail than subsequent reports.  Once a foundation
is established, only new information should be addressed.  The intent is to refresh
memories and to direct interested parties to earlier reports for more detailed information. 
An initial report may inform the geologist who finds the occurrence of an endangered
plant on a specific geological formation interesting, or the trainer who is curious about
expanding training activities into an under-utilized area.  If trend analysis is important,
then it is essential to present results over the available time period. 

A report addresses a problem or question in specific terms.  Essential facts are classified
and organized with an emphasis on processes, causes, and results.  The facts are evaluated
and interpreted.  Some reports may emphasize recommendations which serve as the basis
for future action.  Recommendations should exclude personal opinion, interest, and bias
(Jones 1976).

In many situations, a report is used as a tool to help managers and funding agencies assess
the success of a project or program (Pneena 1986).   The type of question and the
audience defines a report's structure and content.  Typically, a report that will be reviewed
and used by colleagues is more detailed than one required by those at higher
organizational levels.  Regardless of the depth of analysis and presentation, all statements
must meet scientific evaluation standards.

Report writing requires a number of tasks that contribute to the overall product.  For
example, the following tasks are typically associated with producing a comprehensive
monitoring report, addressing a variety of issues and including both qualitative and
quantitative data summaries:

Assemble Information: this task may require inventories of available background
information including descriptive (i.e., plans, reports) and spatial (i.e., map and GIS) data.
 A literature search using library and installation documents is essential to the validity of
the report by providing additional substance and building on the work of others.  A
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literature search should provide important background and reference information
regarding ecology, monitoring approaches, and management issues.

Data Preparation: requires the assembly, organization, and evaluation of existing data to
be analyzed in the report.  Missing or invalid data should be found or corrected,
respectively.  Data may have to be reformatted depending on the analysis tools.  This is
sometimes a very time-consuming effort, depending on quality control and data
management efforts up to that point.  Report preparation and writing requires the database
be complete, organized, and in condition for general use.

Data Summary and Statistical Analysis:  Once the objectives of the report are
determined, data can be summarized and analyzed.  Analysis typically involves extracting
summaries from raw data and subsequent analysis.

Prepare Graphics and Write:  Once summaries are generated, graphics can be
developed for the report.  Graphics are often prepared as a framework for the presentation
and discussion of results.

Submit to Others for Review and Perform Final Edits: The draft report should be
reviewed by both members of the intended audience and others who have a good
understanding of the subject matter.  Once edits are completed, the report is ready for
reproduction, binding, and distribution.

11.13.2 Generic Report Organization

Reports generally follow scientific writing protocols and include an introduction, methods
and materials, results and discussion, conclusions, and recommendations.  Report writing
requires both structured analysis and creativity. 

11.13.2.1 Preliminary Sections

Title page, table of contents, list of tables, list of figures, and funding source make up the
preliminary pages of a report.  Additional pages may include acknowledgments, executive
summary, abstract, or preface.  These pages are numbered with lower case Roman
numerals.  These initial pages allow the reader to find specific information and quickly
achieve a sense for the organization, rationale, and findings of the report.

The title page includes the title of the report, authorship and affiliation, for whom the
report was prepared, and the date.  The title should be concise and informative. 
Authorship is typically given to those individuals who have substantially contributed to
the report.  Individuals who have advised or given technical assistance as part of their
normal duties are not included as authors.  All authors should review and approve the
final draft (O'Connor and Woodford  1975, National Bureau of Standards 1980). 
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The table of contents typically includes primary and secondary section headings. 
Additional levels of organization can be included if so desired.  Descriptive headings will
lead readers to sections of interest.  A list of figures and tables should follow the section
locations.  Concise and informative titles to figures and tables are helpful to readers. 

The executive summary is a condensed version of the report.  Limited to one or two
pages, an executive summary presents the rationale for the report, the findings,
conclusions, and recommendations in a non technical way (Shelton 1994).  An abstract is
similar to an executive summary but is generally shorter, often a single paragraph. 
Acknowledgments recognize individuals or groups who have made a significant
contribution to the report, but who cannot be regarded as authors.

11.13.2.2 Introduction

The introduction sets the stage for the report.  The background, justification, and the
scope of the project or program are described.  The project goals and objectives are
presented in a clear, concise manner.  The introduction may include a general description
of the site location and an installation's mission.  Background information relevant to the
ecology and history of the project area aids in justifying methods and objectives.  Land
uses unique to the installation may be described, especially if they affect the interpretation
of results. 

11.13.2.3 Study Area or Site Description

A summary of an installation's natural resources should include geologic development
and features, soils, climate, vegetation, wildlife, physiography, hydrography, and special
concerns.  Any attribute reviewed should aid the project information that will be
presented later in the report.

Natural Resources -- The natural resources are the setting upon which an installation's
mission(s) takes place.  Often mission is defined by the resources available.  How these
resources are used and preserved are an important part of mission continuation.  A
description of the natural resources provides a framework to anchor the field data. 

Geological Development and Features -- The geology of an area affects the types of
soils present as well as the associated vegetation.  A description of the geology can
outline a number of physical limitations to training.  Geology can also help explain why
certain areas are more heavily used, and why other sites should not be used.

Soils -- An installation's soils are related to geology, landform, relief, climate, and the
vegetation (Cochran 1992).  The information identifies the potential constraints to
training, vegetation patterns, and the likelihood of erosion problems.  Not all installations
have specific soil information available.  For installations with completed soil surveys,
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the Natural Resources Conservation Service (NRCS) can provide needed information.  In
addition, the NRCS can provide the R-value used in calculating soil erosion potential
with the Universal Soil Loss Equation.

Climate -- Many installations have weather stations on site.  Often these stations are at
airfields.  Data are available from the National Climatic Data Center, Asheville, North
Carolina, for established stations. These data are also available on CDROM from
EarthInfo, Inc, Boulder, Colorado (http://www.csn.net/~jacke/index.html).  Compact
disks (CDs) containing these data may be available from university libraries.  Some data
are available on the world wide web.  For example, see: On Line Climate Data page;
http://www.ncdc.noaa.gov/ol/climate/climatedata.html.

Vegetation -- Putting the vegetation into a historical framework helps readers understand
the associations present and responses to natural and human-induced events.  Severe
disturbances may simplify or add to the vegetative complexity.  In a historical context, the
sensitivity, resistance, and resilience of the vegetation may become more apparent.  This
information may help in planning prescribed burns, forestry practices, or agricultural
leases.

Wildlife -- As with vegetation, a brief background of the wildlife present is helpful to the
reader.

Pysiography -- Landform, topographic position, and aspect can be important
determinants of plant communities. This information may be derived in part from
elevation layers using a GIS.  Field data collection and soil surveys also provide
information. 

Hydrography -- Streams and water body locations are available from digital and paper
maps.  Stream flow information for gauges are usually maintained by universities and/or
state agencies, and is often available via the world wide web.

Areas of Special Interest or Concern -- Areas of special interest may be descriptions or
locations of species of concern, natural features or plant communities, wetlands, soils,
etc.  A brief description of the areas, their importance, and ongoing measures for
protection help the reader understand the natural resources of an installation.

11.13.2.4 Methods

The methodology of a project should be explained with enough detail for the project to be
repeated, achieving similar results.  Detailed methodologies can be presented in other
documents such as a monitoring protocol.  Any modifications or methods unique to the
project need to be detailed.  General treatments and sample size(s) must be provided, as
well as the duration and time of fieldwork.  Statistical analyses and justifications can be
addressed in detail in this section and then mentioned in the results.

http://www.ncdc.noaa.gov/ol/climate/climatedata.html
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11.13.2.5 Results and Discussion

The results and the discussion can be either one or two sections.  Placing them together is
easier to write and easier on the reader, especially if the study is complex.  If the two
sections are separate, be sure not to discuss results in the results section and to address all
of the results in the discussion section.  Make the results section comprehensible and
coherent on its own.  Describe the purpose, the significance, and the relevance of the
information, but do not discuss the results extensively.  Refer to tables and figures to
illustrate the findings and support conclusions.  Excessive description of data already
presented in graphics should be avoided.  However, no table or figure should be included
that is not directly cited and relevant to the discussion.  Descriptions of and references to
tables and figures should be straightforward and explicit.

Develop the discussion in the same order as the results were presented.  The discussion is
an elaboration and an assessment of the results section.  The results are related to
previous studies and the implications of the results are discussed.  Do not conceal
negative results and discrepancies.  Instead, try to explain, or admit your inability to do so
(O'Connor and Woodford 1975).

11.13.2.6 Conclusions and Recommendations

The conclusions tie the objective(s) to the results and the discussion.  The emphasis is on
what was found in light of the stated objectives of the report.  The conclusions re-address
the important findings of the project.  If someone were to only read the introduction and
the conclusion, they should have a good idea of the contents of the report.  
Recommendations are based on the technical evidence and the author's professional
expertise (Shelton 1994).  When data and expertise do not answer the objectives of a
project, recommendations should address alternative methods or approaches. 

11.13.2.7 Literature Cited and Bibliographic References

If a report is going to be published, all published works cited must be referenced. 
Unpublished works, obscure documents, and personal communications are not included
in the literature cited, but should be referenced in the text or placed in a footnote if more
detailed information is necessary.  The format of the Literature Cited section should be
consistent and have a logical organization.

11.13.3 Style and Format

All communication is imperfect, because the ability to understand information depends
on both the sender and the receiver (Pneena 1986).  Style is a subtle method of
encouraging someone to read the written word.  Style includes everything from page
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layout to grammar to choice of words.   Style is largely a personal characteristic but
authors should always strive for clarity, conciseness, and consistency.

Vigorous writing is concise.  A sentence should contain no unnecessary wrods, a
paragraph no unnecessary sentences, for the same reason that a drawing should contain no
unnecessary lines and a machine no unnecessary parts… -- (Strunk and White 1979)

The format of a document is an invitation to read the document or put it down.  Pick a
font, type size, and line spacing that makes reading easy.  Use descriptive headings to
help readers locate specific topics and to break up the page.  Illustrations provide
information in an alternative format and give the reader a momentary diversion.  Bulleted
items alter the overall look to a page and provide a change in rhythm.  Do not, however,
add so many distractions and increase margins and line spacing to make the reader
wonder why so much paper is being used.  Additional writing references include Sabin
(1993) and Style Manual Committee (1994).

11.13.3.1 Tips for Effective Writing

Effective writing is a skill learned over time, which comes naturally to some, but is
laborious to most.  Some writing critiques and editorial revisions are based on style
differences and not grammatical problems.  Some errors seen by others would be evident
to the writer if there was time to put the document aside for awhile.  Pneena (1986)
presents some simple writing techniques to keep in mind while writing and proof reading
a report:

1.  Avoid long, convoluted sentences and paragraphs.

2.  Avoid jargon.

3.  Limit the use of prepositions - the number of prepositional phrases in a sentence
makes reading and understanding laborious.

4.  Whenever possible, use precise writing in favor of comfortable writing.  Examples
include:



662

COMFORTABLE WRITING PRECISE WRITING

was low in frequency less frequent

was of greater importance was more important

in order to to

the preparation of reports preparing reports

the targeting of erosion targeting erosion

to be used in place of to replace

are of importance are important

5. Limit the use of the word 'and' to join phrases.  Instead:
•  Use short sentences.
•  Use other connectives (e.g., thus, often, in addition).
•  Connected items must parallel each other (i.e., the same structural or
grammatical form for all parts of a series -- preparing documentation, reporting
findings, and addressing goals).

6. Limit clutter words and crutch phrases (e.g., there are, it is apparent that, it is
important to note, etc.).

7. Limit repeating expressions (e.g., Invasive species abundance in Training Area
2A increased by 12% , which was a much larger increase in invasive species
abundance compared to Training Area 2B.)

8. Limit unnecessary adjectives and adverbs (e.g., it seems, likelihood, sufficiently,
frequently, etc.).

9. Use ordinary words.

10.  Limit verbs such as  is and occurred.

11. Conduct which hunts.  Which is used to introduce nonessential clauses: “Training
intensity increased from 1995 to 1998, which was the consequence of mission
change”.  That ordinarily introduces essential clauses: “The report that we
prepared for the Colonel should be of help.”

12. Follow which hunts by searches for the words that, it, and of.  Sometimes these
are the best words, but often they are not.

13. Use the active verb tense rather than the passive.  Using the passive verb tense is
common and accepted in scientific writing, but should be minimized.
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14. Put related but non-essential information into an appendix.  Information contained
in appendices should be cited in the text; otherwise, another document may be a
more appropriate place for the information.  Do not put copious amounts of raw
data in an appendix unless it serves a useful purpose.

11.13.4 Tables

Every table must have a purpose and convey a message.  A table should be able to stand
alone from the text.  The table title should be descriptive.  If a number of tables contain
similar information, the legend of the first should be inclusive of all necessary
information. In subsequent tables, the previous table can be cited for the specifics. 

A table's format needs to be logical.  If the amount of data is voluminous, break into a
summary table for the text and place the whole table in an appendix.  Put control or base
values near the beginning of the table.  Columns with comparative data should be next to
each other. 

The number of significant figures (i.e., decimal places) should be consistent and
indicative of the level of precision used in measurement.  When possible align numbers
using decimal points.  The number of samples, the standard error or standard deviation of
the mean, the probability, and the type of statistical analysis should be stated.
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�  Able to stand alone
�   Format logical
�   Limited amount of information
�   Note sample size
� Measure of statistical variability shown
�   Statistical test noted
�   Terms explained

Figure 160.  Example of tabular data that includes essential components.

11.13.5 Graphics

A graphic, like a table, needs to be interpreted independent from the text.  Most graphics
are titled as Figures in a report.  Types of graphics include maps; histograms, line graphs,
pie charts, and other representations of qualitative or quantitative information; flow
charts; organizational charts, illustrations, and photographs.   The title or figure caption
should be informative and contain information to explain the graphic.  If a number of
similar graphics occur together, the legend of the first graphic should be complete to
avoid unnecessary replication.  Subsequent legends can then refer to the earlier figure for
specific information.  Examples of properly labeled and captioned graphics are presented
in Figure 161.

All axes must be labeled and measurement units displayed if appropriate. Standard errors
or standard deviations of the mean, sample size, and the type of statistical test used
should be included.  Symbols and lettering must be defined.  Also, do not extrapolate
beyond sample data without an explanation or a caution to readers.
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Although color figures can add to the cost of report reproduction, they can significantly
enhance the appearance of results.  If color figures are used, choose colors that are
pleasing and reproduce well in black and white.  Size figures so the information is clear
and easily discerned.  Most figures can be presented in the text instead of using an entire
page.

�  Title describes graphic

�  Legend includes all boundaries
  and symbols

�  The graphic can stand alone

� The graphic is understandable
 in black and white

�  Map figures should include a
North arrow and scale bar

�  Title describes graphic

�   All symbols are identified

�   The colors are distinguishable in black
and white

� The title legend includes the type of
statistical test used

Figure 161.  Example of graphics showing necessary components.

11.13.6 Abbreviated Format

As stated above, professional colleagues tend to expect more detail and a higher level of
reporting compared to inexperienced or non-technical staff.   A comprehensive report,
reviewing a number of years of data, can consist of over 100 pages of text, and with

Digging Site
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Live Fire Training Area
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Direction of Water Flow
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Figure 3.  Water flow in the Zyzzyc River Sub-Watershed located in the Live Fire Training Area of Camp USA.
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Figure 13.  Ground cover by category on 110 plots at Camp USA.  Means and their standard errors shown
for plant cover types.   
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appendices, a report can approach 150 pages.  While the complexity of a report is
necessary, a brief review of the contents is often appreciated.  One method is to develop a
computer presentation.  The objectives as they pertain to a specific audience can be
highlighted.  The methods, data, results, discussion, and conclusions are developed for
the intended audience, and illustrated as bulleted items.  Photographs illustrating the data,
rather than tables and charts provide a more dynamic document and a document
supported by scientific protocols.  Results can be presented in an abbreviated format
(Figure 162) or condensed to the level of information common to presentation slides
(Figure 163).
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Figure 162.  Examples of abbreviated reporting approach.
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DISTURBANCE •  Note tracking
evidence

•  Tracking increased
43% between surveys

•  Heavily tracked
areas showed signs of
recovery when training
was withheld

•  Soil erosion rates
increased 15%

Figure 163.  Example of information slide prepared for oral presentation.

11.13.7 Additional Recommendations

Reporting of monitoring results should be done in a timely and efficient manner.  Data
should be converted to electronic format, if appropriate, summarized, and evaluated
before the beginning of the next data collection cycle.  To ensure continued program
support, monitoring programs must generate reports that are useful, address specific
management concerns or issues, and widely applicable.  The precision of the data should
be known and specifically stated in summaries and reports.  Lastly, reports should be
prepared and distributed on a regular basis using a format that is straightforward and
appropriate to the user community, including range operations personnel/military trainers,
land managers, and public land agencies (e.g., where BLM, National Forest, and State
lands are used for training).
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11.15 Appendix   Statistical Reference Tables

Table 71 Critical values of the two tailed Student’s t-distribution
Table 72 Critical values for correlation coefficients
Table 73 Binomial (percentage) confidence limits table
Table 74 Critical values of the chi-square distribution 
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Table 71.  Critical values of the two-tailed Student’s t-distribution.  Reprinted with permission from
Rohlf and Sokal, Table 12.

To look up the critical values of t for a given number of degrees of freedom, look up v = n-1 df in
the left column of the table and read off the desired values of t in that row.  If a one-tailed test is
desired, the probabilities at the head of the table must be halved.  For example, for a one-tailed
test with 4 df, the critical value of t = 3.474 delimits 0.01 of the area of the curve.
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Table 72.  Critical values for (product moment) correlation coefficients. Reprinted with permission
from Sokal and Rohlf 1981, Table 25.

To test the significance of a correlation coefficient, the sample size n upon which it is based must
be known.  Enter the table for v = n-2 degrees of freedom and consult the first column of values
headed “number of independent variables”.
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Table 73.  Confidence limits for percentages (for sample sizes up to n=30) based on the binomial
distribution.  Reprinted with permission from Sokal and Rohlf 1981, Table 23.
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Table 73 Continued.  Confidence limits for percentages based on the binomial distribution, for larger
sample sizes (n=50, 100, 200, 500, and 1000).  Reprinted with permission from Sokal and Rohlf 1981,
Table 23.
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Table 73 Continued. 
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Table 73 Continued.  Large sample sizes (31%-50%).
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Table 74.  Critical values of the chi-square distribution.  Reprinted with permission from Sokal and
Rohlf 1981, Table 14.

To find the critical value of X2 for a given number of degrees of freedom, look up v df in the left
column of the table and read off the desired values of X2 in that row. 
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Table 74.  Continued.
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